精英家教网 > 初中数学 > 题目详情
(2008•连云港)如图,扇形彩色纸的半径为45cm,圆心角为40°,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为    cm.
(结果精确到0.1cm.参考数据:≈1.414,≈1.732,≈2.236,π≈3.142)
【答案】分析:先根据圆锥的底面周长等于侧面展开图的扇形弧长是10π,求出半径,再根据勾股定理计算.
解答:解:扇形的弧长是:=10π,
设圆锥的底面半径是r,
则2πr=10π,
解得:r=5cm,
圆锥的母线,锥高,底面半径正好构成直角三角形,
根据勾股定理就可以得到圆锥的高===20≈44.7cm.
这个圆锥的高约为44.7cm.
点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
(1)圆锥的母线长等于侧面展开图的扇形半径;
(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月江苏省连云港市岗埠中学月考数学试卷(解析版) 题型:选择题

(2008•连云港)已知某反比例函数的图象经过点(m,n),则它一定也经过点( )
A.(m,-n)
B.(n,m)
C.(-m,n)
D.(|m|,|n|)

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2008•连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省宁波市镇海应行久外语实验学校中考模拟试卷(余满龙)(解析版) 题型:解答题

(2008•连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省连云港市中考数学试卷(解析版) 题型:解答题

(2008•连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省连云港市中考数学试卷(解析版) 题型:选择题

(2008•连云港)已知某反比例函数的图象经过点(m,n),则它一定也经过点( )
A.(m,-n)
B.(n,m)
C.(-m,n)
D.(|m|,|n|)

查看答案和解析>>

同步练习册答案