精英家教网 > 初中数学 > 题目详情
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为
 
分析:首先理解“可连数”的概念,再分别考虑个位、十位、百位满足的数,用排列组合的思想求解.
解答:解:个位需要满足:x+(x+1)+(x+2)<10,即x<
7
3
,x可取0,1,2三个数.
十位需要满足:y+y+y<10,即y<
10
3
,y可取0,1,2,3四个数(假设0n就是n)
因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.
则小于200的三位“可连数”共有的个数=4×3×1=12;
小于200的二位“可连数”共有的个数=3×3=9;
小于200的一位“可连数”共有的个数=3.
故小于200的“可连数”共有的个数=12+9+3=24.
点评:解决问题的关键是读懂题意,依题意列出不等式进行求解,还要掌握排列组合的解法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有(  )个.
A.9B.11C.12D.15

查看答案和解析>>

科目:初中数学 来源:竞赛辅导:整数的基本知识4(解析版) 题型:选择题

若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有( )个.
A.9
B.11
C.12
D.15

查看答案和解析>>

同步练习册答案