精英家教网 > 初中数学 > 题目详情

二次函数y=x2+bx+c的图象如图所示.
(1)求此二次函数的解析式;
(2)求此二次函数图象与x轴的交点,当x满足什么条件时,函数值y<0;
(3)把此抛物线向上平移多少个单位时,抛物线与x轴只有一个交点?并写出平移后的抛物线的解析式.

解:(1)由题意得:
解得:
∴y=x2+2x-3

(2)当y=0时,x2+2x-3=0
得:x=-3,x=1
∴当-3<x<1时,y<0

(3)y=x2+2x-3=(x+1)2-4
∴把此抛物线向上平移4个单位时,抛物线与x轴只有一个交点.
此时抛物线解析式为:y=(x+1)2即y=x2+2x+1
分析:(1)根据图象可知二次函数的对称轴是x=-1,并且经过点(0,-3),即常数项c=-3.即可求得函数解析式;
(2)求出函数与x轴的交点坐标即可根据图象求解;
(3)把函数化为顶点式y=a(x-h)2+k的形式,向上平移使抛物线与x轴只有一个交点,即把解析式中的k变成0即可.
点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•槐荫区一模)已知二次函数y=x2-2x-3,当自变量x取两个不同的值x1、x2时函数值相等,则当自变量x取
x1+x22
时的函数值与x=
1
1
时的函数值相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=x2+x-2的图象与x轴交点的横坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沛县一模)在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x -3 -2 -1 1 2 3 4 5 6
y -14 -7 -2 2 m n -7 -14 -23
则m、n的大小关系为 m
n.(填“<”,“=”或“>”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝山区一模)二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C
(1)求m的值和点B的坐标
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2-2x+a的图象与x轴有且只有一个公共点.则二次函数y=-x2-2x+a图象的顶点坐标为
(-1,0)
(-1,0)

查看答案和解析>>

同步练习册答案