分析 (1)四边形ABCD是正方形,正方形的四个边相等且对边平行,四个角都是直角,很容易证明△AME≌△DMF,从而可得出结论.
(2)设AE=a时,△EGF的面积为S△EGF,有两种情况,当点E与点A重合时,即x=0时,可求出S△EGF的值,当点E不与点A重合时,0<a≤2,根据条件可证明Rt△AEM∽Rt△NGM,根据相似三角形的对应边成比例,可得出函数式.
解答 解:(1)证明:∵四边形ABCD是正方形,
∴AB∥CD,∠A=∠MDF,
在△AME和△DMF中,$\left\{\begin{array}{l}{∠AME=∠FMD}\\{AM=DM}\\{∠A=∠MDF}\end{array}\right.$
∴△AME≌△DMF
∴EM=FM;
(2)解:当点E与点A重合时,如图,
a=0,S△EGF=$\frac{1}{2}$AD×MG=$\frac{1}{2}$×2×2=2,
当点E不与点A重合时,0<a≤2,
∵EM=FM
在Rt△AME中,AE=a,AM=1,ME=$\sqrt{{a}^{2}+1}$$\sqrt{{a}^{2}+4}$,
∴EF=2ME=2$\sqrt{{a}^{2}+1}$
如图,
过M作MN⊥BC,垂足为N
则∠MNG=90°∠AMN=90°MN=AB=AD=2AM
∴∠AME+∠EMN=90°
∵EMG=90°
∴∠GMN+∠EMN=90°
∴∠AME=∠GMN
∴Rt△AEM∽Rt△NGM,
∴$\frac{AM}{MN}=\frac{ME}{MG}$
∴MG=2ME=2$\sqrt{{a}^{2}+1}$
∴S△EGF=$\frac{1}{2}$EF×MG=$\frac{1}{2}$×2$\sqrt{{a}^{2}+1}$×2$\sqrt{{a}^{2}+1}$=2a2+2.
∴S△EGF=2a2+2其中0<a≤2,
点评 本题考查了全等三角形的判定和性质定理,相似三角形的判定和性质定理,以及全等三角形的判定正方形的性质等.
科目:初中数学 来源:2016-2017学年山东省淄博市(五四学制)六年级下学期第一次月考数学试卷(解析版) 题型:单选题
列语句正确的是( )
A. 在所有连接两点的线中,直线最短 B. 线段AB是点A和点B之间的距离
C. 延长射线AB D. 反向延长线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com