【题目】如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于点A,交x轴于B,C两点(点B在点C的左侧),已知C点坐标为(6,0).
(1)求此抛物线的解析式;
(2)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△PAC的面积最大?求出△PAC的最大面积;
(3)连接AB,过点B作AB的垂线交抛物线于点D,以点C为圆心的圆与抛物线的对称轴l相切,先补全图形,再判断直线BD与⊙C的位置关系并加以证明.
【答案】
(1)解:∵抛物线的顶点为(4,1),
∴设抛物线解析式为y=a(x﹣4)2+1.
∵抛物线经过点C(6,0),
∴0=a(6﹣4)2+1,解得a=﹣ ,
∴y=﹣ (x﹣4)2+1=﹣ x2+2x﹣3.
所以抛物线的解析式为y=﹣ x2+2x﹣3.
(2)解:如图1,过点P作平行于y轴的直线交AC于点Q,
∵A(0,﹣3),C(6,0),
∴直线AC解析式为y= x﹣3.
设P点坐标为(m,﹣ m2+2m﹣3),
则Q点的坐标为(m, m﹣3),
∴PQ=﹣ m2+2m﹣3﹣( m﹣3)=﹣ m2+ m,
∵S△PAC=S△PAQ+S△PCQ= ×(﹣ m2+ m)×6=﹣ (m﹣3)2+ ,
∴当m=3时,△PAC的面积最大为 .
∵当m=3时,﹣ m2+2m﹣3= ,
∴P点坐标为(3, ).
综上:P点的位置是(3, ),△PAC的最大面积是 .
(3)解:判断直线BD与⊙C相离.
证明:令﹣ (x﹣4)2+1=0,解得x1=2,x2=6,
∴B点坐标(2,0).
又∵抛物线交y轴于点A,
∴A点坐标为(0,﹣3),
∴AB= .
设⊙C与对称轴l相切于点F,则⊙C的半径CF=2,
作CE⊥BD于点E,如图2,则∠BEC=∠AOB=90°.
∵∠ABD=90°,
∴∠CBE=90°﹣∠ABO.
又∵∠BAO=90°﹣∠ABO,
∴∠BAO=∠CBE.
∴△AOB∽△BEC,
∴ ,
∴ ,
∴CE= >2.
∴直线BD与⊙C相离.
【解析】(1)由于本题告诉了抛物线的顶点,故设顶点式,然后又把点C的坐标代入即可求出二次项系数a的值,从而得出函数解析式;
(2)如图1,过点P作平行于y轴的直线交AC于点Q,由A,C两点的坐标,利用待定系数法求出直线AC的解析式,根据抛物线上点的坐标特点设出P点的坐标,进而表示出Q点的坐标,从而表示出PQ的长度,根据S△PAC=S△PAQ+S△PCQ,建立出函数关系式,并化为顶点式知当m=3时,△PAC的面积最大,然后把m=3代入P点的坐标表达式,从而得出P点的坐标;
(3)判断直线BD与⊙C相离.首先找到B、A点的坐标,根据勾股定理得出AB的长,设⊙C与对称轴l相切于点F,则⊙C的半径CF=2,作CE⊥BD于点E,如图2,则∠BEC=∠AOB=90°,然后根据同角的余角相等得出∠BAO=∠CBE,进而判断出△AOB∽△BEC,根据相似三角形的性质得性质得出CE的长从而根据直线与圆的位置关系作出判断即可。
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】请你补全证明过程:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:EF∥CD
证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=90°,∠ACB=90°①( )
∴∠DGB=∠ACB ②( )
∴DG∥AC ③( )
∴∠2= ④________ ⑤( )
又∠1=∠2 ⑥( )
∴∠1=∠DCA ⑦( )
∴EF∥CD ⑧( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,
DE与AB相交于点E.
(1)求证:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为y .
①求y关于x的函数关系式.
②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在矩形ABCD中,BC=8,CD=6,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则△BDE的面积为( )
A. B. C. 21D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:
(1)图中自变量是____,因变量是______;
(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;
(3)小明出发______小时后爸爸驾车出发;
(4)图中A点表示___________________________________;
(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);
(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A.2
B.2
C.2
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:
(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?
(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司销售一种进价为20 (元/个)的计算器,其销售量y (万个)与销售价格x (元/个)之间为一次函数关系,其变化如下表:
价格x (元/个) | … | 30 | 50 | … |
销售量y (万个) | … | 5 | 3 | … |
同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?
(注:净利润=总销售额﹣总进价﹣其他开支)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com