精英家教网 > 初中数学 > 题目详情

作业宝如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,DE⊥BD交AB于E,⊙O是△BDE的外接圆,交BC于点F
(1)求证:AC是⊙O的切线;
(2)连结EF,若BC=9,CA=12,求数学公式的值;
(3)若F是弧BD的中点,过F作FG⊥BE于G.求证:GF=数学公式BD.

解:(1)∵DE⊥BD交AB于E,⊙O是△BDE的外接圆,
∴BE是⊙O的直径,点O是BE的中点,
连结OD,
∵∠C=90°,
∴∠DBC+∠BDC=90°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵OB=OD,
∴∠ABD=∠ODB,
∴∠ODB+∠BDC=90°,
∴∠ODC=90°,
∵OD是⊙O的半径,
∴AC是⊙O的切线;

(2)设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225,
∴AB=15,
∵∠A=∠A,∠ADO=∠C=90°,
∴△ADO∽△ACB,
=
=
∴r=
即BE=
∵BE是⊙O的直径,
∴∠BFE=90°,
∴△BEF∽△BAC,
===,;

(3)连结OF,交BD于H,
∵F是弧BD的中点,OF是⊙O的半径,
∴BH=BD,∠BHO=90°,
∵FG⊥BE,
∴∠FGO=∠BHO=90°,
又∵OF=BO,∠FOG=∠BOH,
在△FOG和△BOH中,

∴△FOG≌△BOH(AAS),
∴GF=BH=BD.
分析:(1)先根据DE⊥BD交AB于E,⊙O是△BDE的外接圆,得出BE是⊙O的直径,点O是BE的中点,连结OD,根据∠C=90°,得出∠DBC+∠BDC=90°,再根据∠ABD=∠DBC,
∠ABD=∠ODB,得出∠ODB+∠BDC=90°,∠ODC=90°,即可证出AC是⊙O的切线;
(2)设⊙O的半径为r,先求出AB=15,再根据∠A=∠A,∠ADO=∠C=90°,证出△ADO∽△ACB,得出=,BE=,根据BE是⊙O的直径,得出∠BFE=90°,则△BEF∽△BAC,从而证出===
(3)连结OF,交BD于H,先证出BH=BD,∠BHO=90°,在证出∠FGO=∠BHO=90°,最后根据OF=BO,∠FOG=∠BOH,证出△FOG≌△BOH,即可得出答案.
点评:本题考查了圆的综合,用到的知识点是圆的有关性质、切线的性质、勾股定理、全等三角形的判定与性质,关键是根据题意画出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案