精英家教网 > 初中数学 > 题目详情
2.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.
某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.

分析 设BD=x,由CD=BC-BD表示出CD,分别在直角三角形ABD与直角三角形ACD中,利用勾股定理表示出AD2,列出关于x的方程,求出方程的解得到AD的长,即可求出三角形ABC面积.

解答 解:如图,在△ABC中,AB=15,BC=14,AC=13,
设BD=x,则有CD=14-x,
由勾股定理得:AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2
∴152-x2=132-(14-x)2
解之得:x=9,
∴AD=12,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×14×12=84.

点评 此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,在研究用火柴摆正方形的问题时,
小明认为摆n个正方形需(3n+1)根火柴棒;
小凡认为摆n个正方形需[n+n+(n+1)]根火柴棒;
小亮认为摆n个正方形需(4n-n)根火柴棒;
小刚认为摆n个正方形需(n+n+n)根火柴棒.
你认为他们谁说的对(  )
A.小明说的对B.四位同学说的都对
C.小明、小凡说得对D.小亮、小刚说的对

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在?ABCD中,E为BD上一点,在连结AE并延长交BC于F点,且BD=4BE,△BEF的面积为1,则?ABCD的面积为(  )
A.12B.24C.13D.26

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.因式分解:3x2+2x-5=(3x+5)(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若|a-2|+b2+2b=-1,则ab=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=140°,则∠AOC=55°;∠BOC=35°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=3,BE=2,则AB=(  )
A.4B.6C.$\frac{5}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,BA=BC,∠ABC=90°,AD∥BC,点E在边AC上,且∠DEB=90°,DH⊥AC于H.
(1)求证:CE-AE=2DH;
(2)若DH=2,AC=8,求四边形BCHD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.点(-1,-$\sqrt{2}$)所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案