探究、猜想、证明题:
观察下列数据:
1×2×3×4+1=25=52=(12+3×1+1)2
2×3×4×5+1=121=112=(22+3×2+1)2
3×4×5×6+1=361=192=(32+3×3+1)2
4×5×6×7+1=841=292=(42+3×4+1)2
…
猜想:(1)5×6×7×8+1=1681=412=(______2+______+______) 2
n(n+1)(n+2)(n+3)+1=______
证明:(2)四个连续自然数的乘积加上1是一个完全平方数.
解:1×2×3×4+1=52=(12+3×1+1)2;2×3×4×5+1=112=(22+3×2+1)2;3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,
得出规律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2,(n≥1),
∴5×6×7×8+1=412=(52+3×5+1)2.
(2)根据(1)得出的结论得出:
n(n+1)(n+2)(n+3)+1
=n(n+3)(n+1)(n+2)+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2.
故答案为:5、15、1、(n2+3n+1)2.
分析:(1)观察下列各式:1×2×3×4+1=52=(12+3×1+1)2;2×3×4×5+1=112=(22+3×2+1)2;3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出规律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2,(n≥1),所以可得出5×6×7×8+1=(52+3×5+1)2=412;
(2)根据(1)得出的规律可得出结论.
点评:此题考查了完全平方数的知识,解答本题的关键是发现规律为n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n≥1),一定要通过观察,分析、归纳并发现其中的规律,难度较大.