【题目】如图,在△ABC中,AD⊥BC于D, CE平分∠ACB分别交AB、AD于E、F两点,且BD=FD,AB=CF.求证:(1)CEAB;(2)AE=BE.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据直角三角形的全等证明和全等三角形的性质解答即可;
(2)根据角平分线的性质和全等三角形的判定和性质证明即可.
试题解析:证明:(1)∵AD⊥BC于D,∴∠ADB=∠CDF=90°.在Rt△ADB和Rt△CDF中,∵AB=CF,BD=DF,∴Rt△ADB≌Rt△CDF(HL),∴∠BAD=∠DCF.在△AEF和△CDF中,∠EAF=∠DCF,∠AFE=∠CFD,∴∠AEC=∠CDF=90°,∴CE⊥AB;
(2)∵CE平分∠ACB,∴∠ACE=∠BCE.又∵CE⊥AB,∴∠AEC=∠BEC=90°.在△ACE和△BCE中,∠ACE=∠BCE,CE=CE,∠AEC=∠BEC,∴△ACE≌△BCE(ASA),∴AE=BE.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AED的顶点D在△ABC的BC边上,∠E=∠B,AE=AB, ∠EAB=∠DAC.
(1)求证:△AED≌△ABC.
(2)若∠E=40°,∠DAC=30°,求∠BAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O,P,A三点,点E是正方形内的抛物线上的动点.
(1)建立适当的平面直角坐标系.
①直接写出O,P,A三点坐标;
②求抛物线L的表达式;
(2)求△OAE与△OCE面积之和的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有、两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.
请根据图象回答下列问题:
(1)、两地的距离是 千米, ;
(2)求的坐标,并解释它的实际意义;
(3)请直接写出当取何值时,甲乙两人相距15千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com