精英家教网 > 初中数学 > 题目详情

【题目】已知:如图四边形OACB是菱形,OBX轴的正半轴上,sinAOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.SAOF=,则k=(  )

A. 15 B. 13 C. 12 D. 5

【答案】A

【解析】

过点AAMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.

过点AAMx轴于点M,如图所示.

OA=a=OB,则,

RtOAM中,∠AMO=90°,OA=a,sinAOB=

AM=OAsinAOB=a,OM=a,

∴点A的坐标为(a,a).

∵四边形OACB是菱形,SAOF=

OB×AM=

×a×a=39,

解得a=±,而a>0,

a=,即A(,6),

∵点A在反比例函数y=的图象上,

k=×6=15.

故选A.

【解答】

解:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.

1问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?

21中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润Pa的函数关系式,并求当a≥30P的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形PQMN在△ABC内,点PAC上,点QMAB上,N在△ABC内,连接AN并延长交BCG,过G点作GDABACD,过DG分别作DE ABGFAB,垂足分别为EF

1)求证:DG=GF

2)若AB=10SABC=40,试求四边形DEFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织甲、乙两班学生参加美化校园的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某工艺厂设计了款成本为元件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价(元/件)

···

···

每天销售量(件)

···

···

1)若的一次函数,求出此函数的关系式:

2)若用()表示工艺厂试销该工艺品每天获得的利润,试求()(/)之间的函数关系式.

3)若该工艺品的每天的总成木不能超过元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2,根据图表中的信息解答下列问题:

分组

分数段(分)

频数

A

36≤x41

2
2

B

41≤x46

5

C

46≤x51

15

D

51≤x56

m

E

56≤x61

10

1)求全班学生人数和的值.

2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.

3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用列表法画树状图法求出恰好选到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转.如图2,从侧面看,踏板静止DE上的线段AB重合,测得BE长为0.21m,当踏板连杆绕着A旋转到AC处时,测得∠CAB42°,点C到地面的距离CF长为0.52m,当踏板连杆绕着点A旋转到AG处∠GAB30°时,求点G距离地面的高度GH的长.(精确到0.1m,参考数据:sin42°≈0.67cos42°≈0.74tan42°≈0.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.

1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:

①小杰共调查统计了   人;②请将图1补充完整;③图2C所占的圆心角的度数是   

2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择A的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】弹簧原长(不挂重物)15cm,弹簧总长Lcm)与重物质量xkg)的关系如下:

弹簧总长Lcm

16

17

18

19

20

重物质量xkg

0.5

1.0

1.5

2.0

2.5

1)求Lx之间的函数关系;

2)请估计重物为5kg时弹簧总长Lcm)是多少?

查看答案和解析>>

同步练习册答案