【题目】已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A. 15 B. 13 C. 12 D. 5
【答案】A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OAsin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=15.
故选A.
【解答】
解:
科目:初中数学 来源: 题型:
【题目】某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.
(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?
(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润P与a的函数关系式,并求当a≥30时P的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形PQMN在△ABC内,点P在AC上,点Q、M在AB上,N在△ABC内,连接AN并延长交BC于G,过G点作GD∥AB交AC于D,过D、G分别作DE ⊥AB,GF⊥AB,垂足分别为E、F.
(1)求证:DG=GF;
(2)若AB=10,S△ABC=40,试求四边形DEFG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某工艺厂设计了款成本为元件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价(元/件) | ··· | ··· | ||||
每天销售量(件) | ··· | ··· |
(1)若是的一次函数,求出此函数的关系式:
(2)若用(元)表示工艺厂试销该工艺品每天获得的利润,试求(元)与(元/件)之间的函数关系式.
(3)若该工艺品的每天的总成木不能超过元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班学生人数和的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转.如图2,从侧面看,踏板静止DE上的线段AB重合,测得BE长为0.21m,当踏板连杆绕着A旋转到AC处时,测得∠CAB=42°,点C到地面的距离CF长为0.52m,当踏板连杆绕着点A旋转到AG处∠GAB=30°时,求点G距离地面的高度GH的长.(精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.
(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:
①小杰共调查统计了 人;②请将图1补充完整;③图2中C所占的圆心角的度数是 ;
(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下:
弹簧总长L(cm) | 16 | 17 | 18 | 19 | 20 |
重物质量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
(1)求L与x之间的函数关系;
(2)请估计重物为5kg时弹簧总长L(cm)是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com