精英家教网 > 初中数学 > 题目详情

【题目】如图ABCACB90°ACBCABC的高CD与角平分线AE相交点F过点CCHAEGABH

1)求BCH的度数

2)求证CEBH

【答案】(1)22.5°;(2)见解析.

【解析】试题分析:(1)根据AE是角平分线,可得∠ACE的度数,再根据直角三角形两余角互余可得∠AEC的度数,再由CH⊥AE即可得;

(2)证明CF=CE,再证明△ACF≌△CBH即可得.

试题解析:(1)∵∠ACB=90°,AC=BC,

∴∠CAB=∠B=45°,

∵AE是△ABC的角平分线

∴∠CAECAB22.5°

∴∠AEC=90°-∠CAE=67.5°,

∵CH⊥AEG,

∴∠CGE=90°,

∴∠GCE=90°-∠AEC=22.5°;

(2)∵∠ACB=90°,AC=BC,CD是△ABC的高

∴∠ACDACB45°

∴∠CFE=∠CAE+∠ACD=67.5°,

∴∠CFE=∠AEC,

∴CF=CE,

在△ACF和△CBH∴△ACF≌△CBHCFBH

∴CE=BH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读:如图1,在ABC中,BEAC边上的中线, DBC边上的一点,CDBD=12ADBE相交于点P,求的值.小昊发现,过点AAFBC,交BE的延长线于点F,通过构造AEF,经过推理和计算能够使问题得到解决(如图2).

1的值为

2)参考小昊思考问题的方法,解决问题:

如图3,在△ABC中,∠ACB=90°,点DBC的延长线上,ADAC边上的中线BE的延长线交于点PDCBCAC=123

的值;

CD=2,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1问题背景

如图1在四边形ABCDABADBAD120°BADC90°EF分别是BCCD上的点EAF60°探究图中线段BEEFFD之间的数量关系

小王同学探究此问题的方法是延长FD到点G使DGBE连结AG先证明ABE≌△ADG再证明AEF≌△AGF可得出结论他的结论应是

2探索延伸

如图2若在四边形ABCDABADBD180°EF分别是BCCD上的点EAFBAD上述结论是否仍然成立并说明理由

3结论应用

如图3在某次军事演习中舰艇甲在指挥中心(O处)北偏西30°A舰艇乙在指挥中心南偏东70°B并且两舰艇到指挥中心的距离相等.接到行动指令后舰艇甲向正东方向以60海里/小时的速度前进舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后指挥中心观测到甲、乙两舰艇分别到达EF且两舰艇与指挥中心O之间夹角EOF=70°试求此时两舰艇之间的距离

4能力提高

如图4等腰直角三角形ABCBAC90°ABACMN在边BCMAN45°.若BM1CN3试求出MN的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,CD是半圆O上的两点,且OD∥BCODAC交于点E

1)若∠B=70°,求∠CAD的度数;

2)若AB=4AC=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值(  )
A.11
B.5
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的两边长分别是4和7,则这个三角形的第三条边的长可能是(  )
A.12
B.11
C.8
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于 两点,交轴于点,直线经过坐标原点,与抛物线的一个交点为,与抛物线的对称交于点,连接,点 的坐标分别为

)求抛物线的解析式,并分别求出点和点的坐标.

)在抛物线上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】anbn+1·(abn)3________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法错误的是(  )
A.aa=a2
B.2a+a=3a
C.a32=a5
D.a3÷a-1=a4

查看答案和解析>>

同步练习册答案