【题目】如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )
A. B. C. D.
【答案】A
【解析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.
∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,
边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC=CMCE=;
故选项B和D不正确;
②如图2,
当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,
矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD=CD(DE+CM)==2x﹣2;
③当4<x≤6时,如图4,
矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,
故选项A正确;
故选:A.
科目:初中数学 来源: 题型:
【题目】如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,连接BD,点O为BD的中点,连接AO并延长交BC于点E,若,CD=4,则AD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AF为⊙O的直径,点B在AF的延长线上,BE切⊙O于点E,过点A作AC⊥BE,交BE的延长线交于点C,交⊙O交于点D,连接AE,EF,FD,DE.
(1)求证:EF=ED.
(2)求证:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于两点和,与轴交于点,点是抛物线上一个动点,过点作轴的垂线,与直线相交于点.
(1)求抛物线的解析式;
(2)当点在直线下方的抛物线上运动时,线段的长度是否存在最大值?存在的话,求出其最大值和此时点的坐标;
(3)若以,,,为顶点的四边形为平行四边形,求点的所有坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在二次函数y=ax2+bx+c(a≠0)的图象中,小明同学观察得出了下面几条信息:①b2﹣4ac>0;②abc<0;③;④b2=4a(c﹣1);⑤关于x的一元二次方程ax2+bx+c=3无实数根,共中信息错误的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com