精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.试说明:(1)△ABE∽△CBD;(2)CD∥AB.
分析:(1)△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,可得出∠ABE和∠CBD相等,又
EB
BD
=
AB
BC
=
2
2
,根据相似三角形的判定SAS即可证明;
(2)利用BDCE四点共圆,及△ABC、△DEB为等腰直角三角形,先证明∠CDB+∠ABD=180°,再根据同旁内角互补,两直线平行进行证明.
解答:证明:(1)△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,
∴∠ABE=∠CBD,
EB
BD
=
AB
BC
=
2
2

∴△ABE∽△CBD;

(2)∵∠ACB=∠EDB=90°
∴点B、D、C、E四点共圆,
∠CDE=∠CBE,∠CBD=∠ABE;
∵△ABC、△DEB为等腰直角三角形,
∴∠ABC=∠EBD=45°,
∠ABC=∠ABE+∠EBC,
∠EBD=∠EBC+∠CBD,
得,∠CBD=∠ABE,
又∵∠CBD=∠ABE,
∴∠CBD+∠EBC=∠ABE+∠EBC=45°,
∴∠CDB+∠ABD=180°,
∴CD∥AB.
点评:本题考查了相似三角形的判定和性质及等腰直角三角形的知识,有一定难度,注意这些知识的灵活综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案