精英家教网 > 初中数学 > 题目详情
抛物线的顶点坐标是【   】
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)
A。
根据顶点式解析式写出顶点坐标即可:
抛物线的顶点坐标是(3,1)。故选A。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.

(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川资阳12分)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.

(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数,当自变量x取m对应的函数值大于0,设自变量分别取m-3,m+3 时对应的函数值为y1,y2,则
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数)。
其中正确结论的序号有     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的最小值是     

查看答案和解析>>

同步练习册答案