【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
①AD和EF互相垂直平分;
②AE=AF;
③当∠BAC=90°时,AD=EF;
④DE是AB的垂直平分线.
其中正确的是_________________(填序号).
【答案】②③
【解析】
根据角平分线的性质得到DE=DF,证明Rt△AED≌Rt△AFD,根据全等三角形的性质、线段垂直平分线的判定定理以及矩形的判定与性质进行逐一判断.
解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,
在△AED和△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,又DE=DF,∴AD垂直平分EF,而EF不一定垂直平分AD,故①错误,②正确;
∵∠BAC=90°,∴∠EAF=∠AED=∠AFD=90°,∴四边形AEDF为矩形,∴AD=EF,故③正确;
∵DE⊥AB,而AD与BD不一定相等,∴不能得出DE是AB的垂直平分线,④错误;
故答案为:②③.
科目:初中数学 来源: 题型:
【题目】如图,在⊙O 中,AB、CD是互相垂直的两条直径,点E在上,CF⊥AE 于点F,若点F四等分弦AE,且AE=8,则⊙O 的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;
(1)若,求点的“等边对称点”的坐标;
(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,
①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;
②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,
(1)若,求的长;
(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春季流感爆发,有一人患了流感,经过两轮传染后共有人患了流感,
(1)每轮传染中平均一个人传染了几个人?
(2)经过三轮传染后共有多少人患了流感?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,3)
(1)求这个二次函数的表达式并直接写出顶点坐标;
(2)若P是第一象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.设点P的横坐标为t
①求线段PM的最大值;
②S△PBM:S△MHB=1:2时,求t值;
③当△PCM是等腰三角形时,直接写点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com