精英家教网 > 初中数学 > 题目详情
(2012•怀化)如图,点P是⊙O外一点,PA是⊙O的切线,切点为A,⊙O的半径OA=2cm,∠P=30°,则PO=
4
4
cm.
分析:根据切线的性质判定△APO为直角三角形,然后在直角三角形中,利用30度角所对的直角边OA等于斜边PO的一半即可求得PO的值.
解答:解:∵如图,PA是⊙O的切线,
∴PA⊥OA,
∴∠PAO=90°;
又∵∠P=30°(已知),
∴PO=2OA(30°角所对的直角边是斜边的一半);
∵OA=2cm(已知),
∴PO=4cm;
故答案是:4.
点评:本题考查了切线的性质、含30度角的直角三角形.运用切线的性质可推知∠PAO=90°,即△PAO是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•怀化)如图,已知AB∥CD,AE平分∠CAB,且交于点D,∠C=110°,则∠EAB为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•怀化)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.
(1)当∠ADC=18°时,求∠DOB的度数;
(2)若AC=2
3
,求证:△ACD∽△OCB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•怀化)如图,四边形ABCD是边长为3
2
的正方形,长方形AEFG的宽AE=
7
2
,长EF=
7
2
3
.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图),这时BD与MN相交于点O.
(1)求∠DOM的度数;
(2)在图中,求D、N两点间的距离;
(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•怀化)如图,抛物线m:y=-
1
4
(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M(3,
25
4
),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D;
(1)求抛物线n的解析式;
(2)设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案