精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.
小题1:判断0G与CD的位置关系,写出你的结论并证明;
小题2:求证:AE=BF;
小题3:若OG·DE=3(2-),求⊙O的面积.

小题1:OG⊥CD
小题2:见解析。
小题3:6π
本题考查圆的相关内容。如相切等。本题利用等腰三角形的性质证明Rt△ACE≌Rt△BCF然后利用相似和全等求解相关问题。
(1)猜想:OG⊥CD.
证明:如图,连结OC、OD,∵OC=OD,G是CD的中点,
∴由等腰三角形的性质,有CG⊥CD. (3分)
(2)证明: ∵AB是⊙O的直径, ∴∠ACB=90°.
在Rt△ACE和Rt△BCF中
∠CAE=∠CBF, ∠ACE=∠BCF=90°,AC=BC.
∴Rt△ACE≌Rt△BCF
∴AE="BF." (7分)
(3)解:过点O作BD的垂线,垂足为H.则H为BD的中点.
∴OH=AD,即AD=2OH.
又∠CAD=∠BAD ,∴CD="BD," ∴OH=OG.
在Rt△BDE和Rt△ADB中,∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽Rt△ADB, ∴BD=AD·DE=2OG·DE=6(2-)
又BD="FD," ∴BF="2BD." ∴BF=4BD=24(2-).……①
设AC=x,则BC=x,AB=x.
∵AD是∠BAC的平分线,∴∠FAD=∠BAD.
在Rt△ABD和Rt△AFD中,∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD.∴AF=AB=x-x=(-1)x
在Rt△BCF中BF=BC+CF=x+[(-1)x] =2(2-)x……②
由①、②解得x=2或-2(舍去).
∴AB=x=·2=2.
∴S=π·(2)=6π
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图:⊙O是△ABC的内切圆,D、E、F是切点,若∠DEF=50º,      
则∠A等于(  )                                                
A.40º      B.50º     C.80º     D.100º                                      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,量角器外缘上有A、B两点,它们所表示的读数分别是 80°、50°,则∠ACB应为(   )

A.30° B.15°      C.20°     D.40°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,C是⊙O上一点,CD⊥AB,垂足为点D, 的中点,相交于点8 cm,cm.

小题1:求AO的长
小题2:求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(11),梯形ABCD,AB∥CD ,AB=2cm,且∠OAB=30°,∠OBA=45°,梯形ABCD内部的⊙O分别切四边于E,F,M,N,

小题1:求出⊙O的半径OM的长度
小题2:求出梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是⊙O的直径,是弦,=48,则=    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,的弦与直径相交,若,则=_ ▲ °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图中,半径平分弦,且,CD=1cm,则_____cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一量角器所在圆的直径为10厘米,其外缘有A、B两点,其读数、分别为71°和47°.

(1).劣弧AB所对圆心角是多少度?
(2).求劣弧AB的长;
(3)问A、B之间的距离是多少?(可用计算器,精确到0.1)                       

查看答案和解析>>

同步练习册答案