精英家教网 > 初中数学 > 题目详情
(2007•中山区二模)已知点M、N分别是平行四边形ABCD的边AB、DC的中点,求证:AN=CN(要求写出证明过程中的重要依据)
分析:根据平行四边形性质得出AB=CD,AB∥CD,推出AM∥CN,AM=CN,得出平行四边形AMCN,根据平行四边形的性质推出即可.
解答:证明:∵四边形ABCD为平行四边形
∴AB=CD,AB∥CD(平行四边形对边相等且平行),
∵点M、N分别是平行四边形ABCD的边AB、DC的中点,
∵AM=
1
2
AB,CN=
1
2
CD
∴AM∥CN,AM=CN,
∴四边形AMCN为平行四边形(有一组对边平行且相等的四边形是平行四边形),
∴AN=CM(平行四边形的对边相等).
点评:本题考查了平行四边形的性质和判定的应用,注意:有一组对边平行且相等的四边形是平行四边形,平行四边形对边相等且平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•中山区二模)根据下列表格中的对应值,关于x的方程ax2+bx+c=0(a≠0)的一个解x得范围正确的是(  )
x 3.23 3.24 3.25 3.26
ax2+bx+c=0 -0.06 -0.02 0.03 0.07

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天我市气温t(℃)的取值范围是
-6≤t≤-1
-6≤t≤-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)观察下列各式:1×8+1=9,12×8+2=98,123×8+3=987,…,猜测123456789×8+9=
987654321
987654321

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)某校办厂两年内产值从3000万元增加到3630万元,设平均每年增长率是x,根据题意,可列方程为
3000(1+x)2=3630
3000(1+x)2=3630

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)如图,正方形ABCD的边BC在x轴的正半轴上,OB=1,M为对角线BD的中点,函数y=
3x
的图象经过A、M两点,与CD交于点N,则CN:DN的值为
1:3
1:3

查看答案和解析>>

同步练习册答案