精英家教网 > 初中数学 > 题目详情
已知线段PA、PB分别切⊙O于A、B两点,AB的度数为120°,⊙O的半径为4,线段AB的长为(  )
A、8
B、4
3
C、6
3
D、8
3
分析:如图,利用切线的性质可以得到PO垂直平分AB,根据弧AB的度数为120°可以得到∠AOP=60°,利用AO=4可以求得AC的长,AB=2AC.
解答:精英家教网解:连接PO,交PO于C点,
∵PA、PB分别切⊙O于A、B两点,
∴PO⊥AB,AC=BC,
∵弧AB的度数为120°,
∴∠AOP=∠BOP=60°,
∵⊙O的半径为4,
∴AC=BC=2
3

∴AB=2AC=2×2
3
=4
3

故选B.
点评:本题考查了切线的性质,解题的关键是正确的利用切线长定理得到PO垂直平分AB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点P的坐标是(
2
+a
2
+b
),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线段,且矩形OAPB的面积为
2
,则P点可能出现的象限有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点,求证四条线段PA、PB、PC、PD不能构成平行四边形;
(3)如图②,正方形EFGH向左平移t个单位长度时,正方形EFGH上是否存在一点P(包括正方形的边界),使得四条线段PA、PB、PC、PD能够构成平行四边形?如果存在,请求出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012届贵州省遵义市中考模拟数学卷(带解析) 题型:解答题

已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点,求证四条线段PA、PB、PC、PD不能构成平行四边形;
(3)如图②,正方形EFGH向左平移个单位长度时,正方形EFGH上是否存在一点P(包括正方形的边界),使得四条线段PA、PB、PC、PD能够构成平行四边形?如果存在,请求出的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年贵州省遵义市中考模拟数学卷(解析版) 题型:解答题

已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点,求证四条线段PA、PB、PC、PD不能构成平行四边形;

    (3)如图②,正方形EFGH向左平移个单位长度时,正方形EFGH上是否存在一点P(包括正方形的边界),使得四条线段PA、PB、PC、PD能够构成平行四边形?如果存在,请求出的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

同步练习册答案