精英家教网 > 初中数学 > 题目详情
取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:
(1)当α为多少度时,能使得图②中AB∥DC;
(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

【答案】分析:一副三角板的角度常识和相似三角形的判定定理及性质可求解.
解答:解:(1)如图②,由题意∠CAC'=α,
要使AB∥DC,须∠BAC=∠ACD,
∴∠BAC=30°.
∴α=∠CAC'=∠BAC'-∠BAC=45°-30°=15°.
即α=15°时,能使得AB∥DC.(4分)


(2)易得α=45°时,可得图③,
此时,若记DC与AC',BC'分别交于点E,F,
则共有两对相似三角形:△BFC∽△ADC,△C'FE∽△ADE.(6分)
下求△BFC与△ADC的相似比:
在图③中,设AB=a,则易得AC=a.
则BC=(-1)a,BC:AC=(-1)a:a=1:(2+
或(2-):2.(8分)
注:△C'FE与△ADE的相似比为:C'F:AD=(-+1):或(+-2):2.

(3)解法一:
当0°<α≤45°时,总有△EFC'存在.
∵∠EFC'=∠BDC+∠DBC',∠CAC'=α,∠FEC'=∠C+α,
∵∠EFC'+∠FEC'+∠C'=180°
∴∠BDC+∠DBC'+∠C+α+∠C'=180°(11分)
又∵∠C'=45°,∠C=30°
∴∠DBC'+∠CAC'+∠BDC=105°(13分)
解法二:
在图②中,BD分别交AC,AC'于点M,N,
由于在△AMN中,∠CAC'=α,∠AMN+∠CAC'+∠ANM=180°,
∴∠BDC+∠C+α+∠DBC'+∠C'=180°
∴∠BDC+30°+α+∠DBC'+45°=180°
∴∠BDC+α+∠DBC'=105°(11分)
在图③中,α=∠CAC'=45°
易得∠DBC'+∠BDC=60°
也有∠DBC'+∠CAC'+∠BDC=105°
综上,当0°<a≤45°时,总有∠DBC'+∠CAC'+∠BDC=105°.(13分)
点评:此题主要考查了相似三角形的判定定理及一副三角板的固定角度.需注意的是利用相似性质的时候找准对应的角、对应边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:
(1)当α为多少度时,能使得图②中AB∥DC;
(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:(1)当α为多少度时,能使得图2中AB∥DC;
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:044

(2006安徽,23)(13分)取一副三角板按图①拼接,固定三角板ADC,将三板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△,如图所示.

试问:(1)当α为多少度时,能使得图②中ABDC

(2)当旋转到图③位置,此时α又为多少度?图③中你能找出哪几对相似三角形,并求其中一对的相似比;

图③

(3)连结BD,当0°<α≤45°时,探寻∠值的大小变化情况,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°得到⊿ABC/,如图②所示。试问:

1.当α为多少度时,能使得图②中AB∥CD?

2.当旋转至图③位置,此时α又为多少度?图③中你能找出哪几对相似三角形,并求其中一对的相似比。

3.连结BD,当0°<α≤45°时,探寻∠DBC/+∠CAC/+∠BDC值的大小变化情况,并给出你的证明。

 

查看答案和解析>>

科目:初中数学 来源:2013届江苏苏州星港学校八年级下5月月考数学试卷(解析版) 题型:解答题

取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°得到⊿ABC/,如图②所示。试问:

1.当α为多少度时,能使得图②中AB∥CD?

2.当旋转至图③位置,此时α又为多少度?图③中你能找出哪几对相似三角形,并求其中一对的相似比。

3.连结BD,当0°<α≤45°时,探寻∠DBC/+∠CAC/+∠BDC值的大小变化情况,并给出你的证明。

 

查看答案和解析>>

同步练习册答案