精英家教网 > 初中数学 > 题目详情
甲、乙、丙三人用擂台赛形式进行训练.每局两人单打比赛,另一人当裁判.每一局输者当下一局的裁判,而原来的裁判与赢者比赛.一天训练结束时,统计甲共打12局,乙共打21局,而丙共当裁判8局.那么整个比赛中第10局的输者(  )
A、必是甲B、必是乙
C、必是丙D、不能确定
考点:推理与论证
专题:
分析:根据丙共当裁判8局,因此,甲乙打了8局;甲共打了12局,因此,丙甲共打了4局,利用乙共打了21局,因此,乙丙打了13局.因此,共打了25局,那么,甲当裁判13局,乙当裁判4局,丙当裁判8局,由于实行擂台赛形式,因此,每局都必须换裁判;即,某人不可能连续做裁判.因此,甲做裁判的局次只能是:1、3、5、…、23、25;由于第11局只能是甲做裁判,显然,第10局的输方,只能是甲.
解答:解:根据题意,知丙共当裁判8局,所以甲乙之间共有8局比赛,
又甲共打了12局,乙共打了21局,所以甲和丙打了4局,乙和丙打了13局,
三个人之间总共打了(8+4+13)=25局,
考查甲,总共打了12局,当了13次裁判,所以他输了12次.
所以当n是偶数时,第n局比赛的输方为甲,从而整个比赛的第10局的输方必是甲.
故选:A.
点评:此题主要考查了推理论证,要首先能够判断出比赛的总场数以及三人各自当裁判的次数,然后根据甲当的裁判次数和总的场数进行分析求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读下列材料:
在平面直角坐标系中,若点P1(x1,y1)、P2(x2,y2),则P1、P2两点间的距离为
(x1-x2)2+(y1-y2)2
.例如:若
P1(3,4)、P2(0,0),则P1、P2两点间的距离为
(3-0)2+(4-0)2
=5

设⊙O是以原点O为圆心,以1为半径的圆,如果点P(x,y)在⊙O上,那么有等式
x2+y2
=1
,即x2+y2=1成立;反过来,如果点P(x,y)的坐标满足等式x2+y2=1,那么点P必在⊙O上,这时,我们就把等式x2+y2=1称为⊙O的方程.
在平面直角坐标系中,若点P0(x0,y0),则P0到直线y=kx+b的距离为
|kx0-y0+b|
1+k2

请解答下列问题:
(I)写出以原点O为圆心,以r(r>0)为半径的圆的方程.
(II)求出原点O到直线y=
(1-n2)x
2n
-
1+n2
2n
的距离.
(III)已知关于x、y的方程组:
y=
(1-n2)x
2n
-
1+n2
2n
…(1)
x2+y2=m…(2)
,其中n≠0,m>0.
①若n取任意值时,方程组都有两组不相同的实数解,求m的取值范围.
②当m=2时,记两组不相同的实数解分别为(x1,y1)、(x2,y2),
求证:(x1-y1)2+(x2-y2)2是与n无关的常数,并求出这个常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

灌云县初级中学组织八年级学生进行了一次游园活动,其中两名同学的对话如下:

已知在该次活动中学校共支出了门票费1200元,请问学校共有多少名同学参加了本次游园活动?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)
3
4x-8
=
1
3x-6

(2)
2
1-x
-
x
3-x
=1-
2x-1
x2-4x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

将正奇数1,3,5,7,…排成五列,如图所示.则2001所在的那列从右边数起是第
 
列.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,AB∥CD,点E是BC的中点,DE平分∠ADC.求证:AE是∠DAB的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个直角三角形两条直角边之差是1,斜边长为5,则这个直角三角形的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

方程(x-1)3-8=0的根是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题.
10张卡片上分别写有0到9这10个数,先将它们从左到右排成一排,再采用交换相邻两张卡片位置的方法对它们进行操作,规则如下:当相邻两张卡片左边卡片上的数比右边卡片上的数大时,交换它们的位置,否则不进行交换.若规定将相邻两张卡片交换一次位置称为1次操作,那么无论开始时这10张卡片的排列顺序如何,至多经过
 
次操作,就能将它们按从小到大的顺序排列.

查看答案和解析>>

同步练习册答案