精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,EAB的中点,连接CE,连接DEACF,AD=4,AB=6.

(1)求证:△ADC∽△ACB;

(2)AC的值;

(3)的值.

【答案】(1)见解析;(2);(3).

【解析】(1)根据两个角对应相等的两个三角形相似证明即可;

(2)根据相似三角形的对应边的比相等列出比例式,计算即可;

(3)根据直角三角形斜边上的中线是斜边的一半得到CE=AE,证明AFD∽△CFE,根据相似三角形的性质解答即可.

(1)证明:∵AC平分∠DAB,

∴∠DAC=CAB,

∵∠ADC=ACB=90°

∴△ADC∽△ACB;

(2)解:∵△ADC∽△ACB,

,即AC2=ADAB=24,

解得,AC=2

(3)解:∵EAB的中点,

CE=AB=AE,

∴∠EAC=ECA;

∵∠DAC=CAB,

∴∠DAC=ECA,

CEAD;

∴△AFD∽△CFE,

CE=AB=3,AD=4,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,连接BD,点OBD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B分别在反比例函数y=(x>0)、y=(x>0)的图象上,且∠AOB=90°,B=30°,求y的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=kx+b与反比例函数y= 的图像如图所示,则关于x的不等式kx+b﹣ ≤﹣2的解集为(
A.0<x≤2或x≤﹣4
B.﹣4≤x<0或x≥2
C. ≤x<0或x
D.x 或0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算: ﹣(3﹣π)0﹣|﹣3+2|;
(2)计算: ÷(1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;
(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0)

(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣ ,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)连接MN,求证四边形MNCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB,以O为圆心,以任意长为半径作弧,分别交OAOBFE两点,再分别以EF为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点FFDOBOP于点D.

(1)若∠OFD=116°,求∠DOB的度数;

(2)FMOD,垂足为M,求证:△FMO≌△FMD.

查看答案和解析>>

同步练习册答案