精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是

【答案】(﹣4,3)
【解析】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,
∵OA绕坐标原点O逆时针旋转90°至OA′,
∴OA=OA′,∠AOA′=90°,
∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,
∴∠OAB=∠A′OB′,
在△AOB和△OA′B′中,

∴△AOB≌△OA′B′(AAS),
∴OB′=AB=4,A′B′=OB=3,
∴点A′的坐标为(﹣4,3).
故答案为:(﹣4,3).

过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

3

y

0

4

6

6

4

0


(1)求这个二次函数的表达式;
(2)直接写出当y<0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣ x2+bx+c与x轴分别交于点A(﹣2,0)、B(4,0),与y轴交于点C.
(1)求抛物线解析式;
(2)求△CAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在ABCABACBECF都是ABC的高线PBE上一点BPACQCF延长线上一点CQAB连结APAQQP.求证:

(1)AQPA.

(2)APAQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的不等式为y=﹣x2+6x+c.
(1)若抛物线与x轴有交点,求c的取值范围;
(2)设抛物线与x轴两个交点的横坐标分别为x1 , x2 . 若x12+x22=26,求c的值.
(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点A表示数a,点B表示数b,已知a、b满足.

(1)a、b的值;

(2)若在数轴上存在一点C,使得CA的距离是CB的距离的2倍,求点C表示的数;

(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.

(1)求梯形ABCD的面积;

(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.

(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得SPDE= SABC?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+bx图象的对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1≤x≤3的范围内有解,则t的取值范围是

查看答案和解析>>

同步练习册答案