精英家教网 > 初中数学 > 题目详情
(2013•德阳)为了了解学生对体育活动的喜爱情况,某校对参加足球、篮球、乒乓球、羽毛球这四个课外活动小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供信息,解答下里面问题:
(1)此次共调查了多少名同学?
(2)将条形统计图补充完整,并计算扇形统计图中的篮球部分的圆心角的度数;
(3)如果该校共有1000名学生参加这四个课外活动小组,而每个教师最多只能辅导本组20名学生,请通过计算确定每个课外活动小组至少需要准备多少名教师?
分析:(1)用足球小组的人数除以对应的百分比即可求解;
(2)用总人数减去其他三个小组的人数可求得参加羽毛球项目的人数,从而将条形统计图补充完整;用篮球项目人数与总人数的百分比,再乘以360度即可求出扇形统计图中的篮球部分的圆心角的度数;
(3)利用样本估计总体的方法求出各小组的人数,再除以20即可解答.
解答:解:(1)90÷45%=200.
故此次共调查了200名同学;

(2)由200-20-30-90=60为参加羽毛球项目的学生数,所以补全的条形图如下所示;
参加篮球项目的学生数占20÷200=10%,所以扇形统计图中篮球部分的圆心角的度数为:360°×10%=36°;


(3)足球组:1000×45%÷20=22.5,至少需要准备23名教师;
篮球组:1000×10%÷20=5,至少需要准备5名教师;
乒乓球组:30÷200×1000÷20=7.5,至少需要准备8名教师;
羽毛球组:60÷200×1000÷20=15人,至少需要准备15名教师.
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•德阳)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,直线y=kx+k(k≠0)与双曲线y=
n+1
x
交于C、D两点,与x轴交于点A.
(1)求n的取值范围和点A的坐标;
(2)过点C作CB⊥y轴,垂足为B,若S△ABC=4,求双曲线的解析式;
(3)在(1)(2)的条件下,若AB=
17
,求点C和点D的坐标,并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.
(1)求证:PC=PG;
(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;
(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为
5
时,求弦ED的长.

查看答案和解析>>

同步练习册答案