精英家教网 > 初中数学 > 题目详情
22、已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.
分析:先根据题中已知条件判定四边形AEDF是平行四边形,然后再推出一组邻边相等.
解答:证明:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,∠EDA=∠FAD,
∵AD是△ABC的角平分线,∴∠EAD=∠FAD,
∴∠EAD=∠EDA,
∴EA=ED,
∴四边形AEDF是菱形.
点评:本题考查菱形的判定和平行四边形的性质.运用了菱形的判定方法“一组邻边相等的平行四边形是菱形”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,已知线段AD是△ABC的中线,且AB=6,AD=4,AC边长为奇数.求边AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.
求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:AD是△ABC的高,∠BAD=62°,∠CAD=28°,则△ABC是什么三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知:AD是△ABC的中线.
(1)画出与△ADC关于点D成中心对称的三角形;
(2)找出与AC相等的线段;
(3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
(4)若AB=5,AC=3,则线段AD的取值范围是多少?

查看答案和解析>>

同步练习册答案