【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
【答案】(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.
【解析】
(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程求解即可;
(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820,且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组,解不等式组即可的不等式组的解集,从而确定方案.
(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:
,
解得: ,
答:设甲种书柜单价为180元,乙种书柜的单价为240元.
(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;
由题意得:
解得:8≤m≤10
因为m取整数,所以m可以取的值为:8,9,10
即:学校的购买方案有以下三种:
方案一:甲种书柜8个,乙种书柜12个,
方案二:甲种书柜9个,乙种书柜11个,
方案三:甲种书柜10个,乙种书柜10个.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, ∠BAC=90°, AB=AC=2,点D,E均在边BC上,且∠DAE=45°,若BD=1,则DE=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b﹣<0的解集.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,已知A组的频数a比B组的频数b小24,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
(1)样本容量为:______,a为______;
(2)n为________,E组所占比例为________;
(3)补全频数分布直方图;
(4)若成绩在80分以上记作优秀,全校共有2000名学生,估计成绩优秀学生有_________名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与双曲线 (x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE , 则b= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点C的坐标为(4,0),一次函数的图像分别交x轴、y轴于点A、点B.
⑴ 若点D是直线AB在第一象限内的点,且BD=BC,试求出点D的坐标.
⑵ 在⑴的条件下,若点Q是坐标轴上的一个动点,试探索在第一象限是否存在另一个点P,使得以B、D、P、Q为顶点的四边形是菱形(BD为菱形的一边)?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,两个建筑物AB和CD的水平距离为30m,张明同学住在建筑物AB内10楼P室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.( 取1.73,结果保留整数.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).
(1)在如图所示的平面直角坐标系画出该四边形;
(2)四边形ABCD的面积是________;
(3)四边形ABCD内(边界点除外)一共有_____个整点(即横坐标和纵坐标都是整数的点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com