精英家教网 > 初中数学 > 题目详情
2.如图,抛物线y=ax2+bx+c(a<0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(3,0)在该抛物线上,则a-b+c的值为0.

分析 由题意可知:对称轴x=1,从而可知(3,0)的关于x=1的对称点坐标为(-1,0),将(-1,0)代入抛物线的解析式即可求出答案.

解答 解:由题意可知:对称轴为x=1,
∴(3,0)关于x=1的对称点坐标为(-1,0),
将(-1,0)代入y=ax2+bx+c,
∴a-b+c=0,
故答案为:0

点评 本题考查二次函数的图象与性质,解题的关键是根据对称轴求出(3,0)的对称点坐标为(-1,0),本题属于中等题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修.现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.
(1)求甲、乙两队工作效率分别是多少?
(2)甲队每天工资3000元,乙队每天工资1400元.学校要求在12天内将学生公寓楼装修完成.若完成该工程甲队工作m天,乙队工作n天.求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某城市电业局为鼓励居民节约用电,采取按月用电量分段收费办法,居民应交电费y(元)与用电量x(度)的函数关系如图所示.
(1)分别求出当0≤x<50和x≥50时,y与x的函数关系式;
(2)若某居民该月用电65度,则应交电费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,一次函数y=ax+b的图象分别与x轴、y轴的负半轴相交于A、B,则下列结论一定正确的是(  )
A.a-b>0B.a+b>0C.b-a>0D.-a-b>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P关于⊙C的“视角”.

(1)如图,⊙O的半径为1,
①已知点A(0,2),画出点A关于⊙O的“视角”;
若点P在直线x=2上,则点P关于⊙O的最大“视角”的度数60°;
②在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标.
(2)若点P在直线y=-$\frac{\sqrt{3}}{3}$x+2上,且点P关于⊙O的“视角”大于60°,求点P的横坐标xP的取值范围.
(3)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标xC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中点A1,A2,…,An在x轴上,点B1,B2,…,Bn在直线y=x上,已知OA1=1,则△B2016A2016A2017的面积为24029

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2=$\frac{n}{x}$的图象交于C、D两点,已知点C的坐标为(-4,-1),点D的横坐标为2.
(1)求反比例函数与一次函数的解析式;
(2)直接写出当x为何值时,y1>y2
(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象所示,则第21小时时,甲乙两车之间的距离为1350千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,求出所选两个班正好不在同一年级的概率.

查看答案和解析>>

同步练习册答案