【题目】如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为( )
A.3B.4C.5D.6
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.
(1)若△ACD的面积为16.
①求抛物线解析式;
②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最大值;
(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作一个30°角”的尺规作图过程.
已知:平面内一点A.
求作:∠A,使得∠A30°.
作法:如图,
(1)作射线AB;
(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;
(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.
∠DAB即为所求的角.
请回答:该尺规作图的依据是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,点D、E分别在AC、AB上,且AD=BE,连接BD、CE交于点P,在△ABC外部作∠ABF=∠ABD,过点A作AF⊥BF于点F,若∠ADB=∠ABF+90°,BF﹣AF=3,则BP=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数 的图象相交于第一、三象限内的两点,与轴交于点 .
⑴求该反比例函数和一次函数的解析式;
⑵在轴上找一点使最大,求的最大值及点的坐标;
⑶直接写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点B(8,0),等边三角形OAB的顶点A在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′,当这个函数图象经过△O′A′B′一边的中点时,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一期间,小明随父母到某旅游胜地参观游览,他在游客中心O处测得景点A在其北偏东72°方向,测得景点B在其南偏东40°方向.小明从游客中心走了2千米到达景点A,已知景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1千米)
(参考数据:sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com