精英家教网 > 初中数学 > 题目详情

【题目】如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是(

A.3
B.3
C.2
D.2

【答案】D
【解析】解:作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,则PB′=PB,AQ=A′Q,OA′=OA=2,OB′=OB=4,∠MOB′=∠NOA′=∠MON=20°,
∴AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,
∵cos60°= =
∴∠OA′B′=90°,
∴A′B′= =2
∴线段AQ+PQ+PB的最小值是:2
故选D.

首先作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,可求得AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,然后由特殊角的三角函数值,判定∠OA′B′=90°,再利用勾股定理求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD

(1)求证:AC是⊙O的切线;
(2)若⊙O的半径为4,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过(
A.第一、二、三、四象限
B.第一、二、三象限
C.第一、二、四象限
D.第二、三、四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.
(1)当每间商铺的年租金为l3万元时,能租出多少间?
(2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.

(1)求证:∠BCO=∠D;
(2)若CD= ,AE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣ x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,

(1)k的值是
(2)求抛物线的解析式;
(3)不等式x2+bx+c>﹣ x+1的解集是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔枝种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.
(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);
(2)该市2012年荔枝种植面积为多少万亩?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C的内接△AOB中,AB=AO=4,tan∠AOB= ,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).

(1)求抛物线的函数解析式;
(2)直线m与C相切于点A,交y轴于点D,求证:AD//OB;
(3)在(2)的条件下,点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.

查看答案和解析>>

同步练习册答案