精英家教网 > 初中数学 > 题目详情

如图所示的图形以点O为旋转中心,旋转________后能与原来的图形重合。

 

 

【答案】

60°或120°或180° 

【解析】

试题分析:根据旋转对称图形的概念计算出角度即可.

该图形被平分成六部分,因而每部分被分成的圆心角是60°,

并且圆具有旋转不变性,因而旋转60度的整数倍,就可以与自身重合.

故填60°或120°或180° .

考点:本题考查了图形的旋转变化

点评:解答本题的关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3c精英家教网m的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(36):34.4 二次函数的应用(解析版) 题型:解答题

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(34):2.4 二次函数的应用(解析版) 题型:解答题

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

科目:初中数学 来源:2012年重庆市万州区长岭初中中考数学模拟试卷(三)(解析版) 题型:解答题

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

同步练习册答案