精英家教网 > 初中数学 > 题目详情
如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、点B(3,0)和点C(0,-3),一次函数的图象与抛物线交于B、C两点.
(1)二次函数的解析式为   
(2)当自变量x    时,两函数的函数值都随x增大而增大;
(3)当自变量    时,一次函数值大于二次函数值;
(4)当自变量x    时,两函数的函数值的积小于0.
【答案】分析:(1)已知A(-1,0)、点B(3,0)两点,设抛物线解析式的交点式y=a(x+1)(x-3),再将点C(0,-3)代入求a即可;
(2)一次函数图象都是y随x增大而增大的,根据抛物线的对称轴x=1,确定抛物线的增减性;
(3)根据两函数图象的交点及图象的位置,确定一次函数值大于二次函数值时,自变量的取值范围;
(4)由图象可知,当x>3时,两函数值同正,当-1<x<3时,两函数值同负,当x<-1时,两函数值一正、一负;
解答:解:(1)∵抛物线经过A(-1,0)、点B(3,0)两点,
∴设抛物线解析式的交点式y=a(x+1)(x-3),
将点C(0,-3)代入,得a=1,
∴y=(x+1)(x-3),即y=x2-2x-3;

(2)∵抛物线与x轴交于A(-1,0)、点B(3,0)两点,
∴抛物线对称轴为x==1,抛物线开口向上,
当x>1时,两函数的函数值都随x增大而增大;

(3)由图象可知,当0<x<3时,一次函数值大于二次函数值;

(4)由图象可知,当x<-1时,两函数值一正、一负,它们的积小于0.
点评:本题考查了用交点式求二次函数解析式的方法,还考查了通过图象探讨二次函数性质的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,三角形ABC的顶点分别为A(1,1)、B(3,1)、C(2,3).
(1)在同一直角坐标中,将三角形向左平移2个单位,画出相应图形,并写出各点坐标;
(2)将三角形向下平移2个单位,画出相应图形,并写出各占坐标;
(3)在①②中,你发现各点横、纵坐标发生了哪些变化.

查看答案和解析>>

科目:初中数学 来源: 题型:

如下图,在同一直角坐标第中表示函数y=
mn
x
和y=mx+m(m≠0,n≠0)的图象正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如下图,在同一直角坐标第中表示函数数学公式和y=mx+m(m≠0,n≠0)的图象正确的是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,三角形ABC的顶点分别为A(1,1)、B(3,1)、C(2,3).
(1)在同一直角坐标中,将三角形向左平移2个单位,画出相应图形,并写出各点坐标;
(2)将三角形向下平移2个单位,画出相应图形,并写出各占坐标;
(3)在①②中,你发现各点横、纵坐标发生了哪些变化.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图,在同一直角坐标第中表示函数y=
mn
x
和y=mx+m(m≠0,n≠0)的图象正确的是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

同步练习册答案