精英家教网 > 初中数学 > 题目详情
在边长为1的正方形网格中,正方形ABFE与正方形EFCD的位置如图所示.
精英家教网
(1)请你按下列要求画图:
①连接BD交EF于点M;
②在AE上取一点P,连接BP,MP,使△PEM与△PMB相似;
(2)若Q是线段BD上一点,连接FQ并延长交四边形ABCD的一边于点R,且满足FR=
1
2
BD
,则
FQ
QR
的值为
 
分析:(1)根据题目的要求及网格的特点,作出图形即可;
(2)如图,根据题意,画出R点的三个可能的位置,分别计算
FQ
QR
的值.
解答:解:(1)画图如图所示;
精英家教网

(2)如图,
精英家教网
当R在R1的位置时,
FQ
QR
=
BF
DR1
=2,
当R在R2的位置时,
FQ
QR
=
BF
DR2
=
2
3

当R在R3的位置时,
FQ
QR
=
BF
MR3
=1.
故答案为:2,
2
3
,1.
点评:本题考查了相似三角形的判定与性质,正方形的性质.关键是能根据题意,利用相似三角形的判断画出图形,利用相似三角形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而
 
(填“增大”或“减小”).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有
4
4
个.
(2)将线段AB沿x轴向右平移2格得线段CD,请你求出线段CD所在的直线函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,A、B、C、D均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)若把直线y=kx+b中的k叫做直线的斜率,那么直线AB和直线AD的斜率有什么关系?直线AB和直线CD的斜率有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.

1.求线段AB所在直线的函数关系式,并写出当0≤y≤2时,自变量x的取值范围;

2.将线段AB绕点B逆时针旋转90°,得到线段BC,若直线BC的函数关系式为y=kx+b,则y随x的增大而      (填“增大”或“减小”).

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图8,在平面直角坐标系中,均在边长为1的正方形网格格点上.

(1)求线段所在直线的函数解析式,并写出当时,自变量的取值范围;

(2)将线段绕点逆时针旋转,得到线段,请在指定位置画出线段.若直线的函数解析式为,则的增大而             (填“增大”或“减小”).

查看答案和解析>>

同步练习册答案