精英家教网 > 初中数学 > 题目详情
如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

【答案】分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;
(2)首先得出△CAG∽△BAC,进而得出AC2=AG•AB,求出AC即可;
(3)先求出AF的长,根据勾股定理得:AG=,即可得出sin∠ADB=,利用∠ACE=∠ACB=∠ADB,求出即可.
解答:(1)证明:连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠CAD+∠ADC=90°,
又∵∠PAC=∠PBA,∠ADC=∠PBA,
∴∠PAC=∠ADC,
∴∠CAD+∠PAC=90°,
∴PA⊥OA,而AD是⊙O的直径,
∴PA是⊙O的切线;

(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,
∴∠GCA=∠PAC,又∵∠PAC=∠PBA,
∴∠GCA=∠PBA,而∠CAG=∠BAC,
∴△CAG∽△BAC,
=
即AC2=AG•AB,
∵AG•AB=12,
∴AC2=12,
∴AC=2

(3)解:设AF=x,∵AF:FD=1:2,∴FD=2x,
∴AD=AF+FD=3x,
在Rt△ACD中,∵CF⊥AD,∴AC2=AF•AD,
即3x2=12,
解得;x=2,
∴AF=2,AD=6,∴⊙O半径为3,
在Rt△AFG中,∵AF=2,GF=1,
根据勾股定理得:AG===
由(2)知,AG•AB=12,
∴AB==
连接BD,
∵AD是⊙O的直径,
∴∠ABD=90°,
在Rt△ABD中,∵sin∠ADB=,AD=6,
∴sin∠ADB=
∵∠ACE=∠ACB=∠ADB,
∴sin∠ACE=
点评:此题主要考查了圆的综合应用以及勾股定理和锐角三角函数关系等知识,根据已知得出AG的长以及AB的长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP相交于点O,
(1)求证:△ABP≌△ACQ;
(2)求∠BOQ的度数.

查看答案和解析>>

科目:初中数学 来源:2013年内蒙古包头市高级中等学校招生考试数学 题型:044

如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;

(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;

(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径,及sin∠ACE的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(内蒙古包头卷)数学(解析版) 题型:解答题

如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;

(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;

(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

 

查看答案和解析>>

同步练习册答案