D
分析:设a+b=m,则ab=m+3,a2+b2变形,再整体代入,转化为关于x的二次函数求最小值,注意a、b正实数的条件的运用.
解答:设a+b=m,则ab=m+3,
a、b可看作关于x的方程x2-mx+m+3=0的两根,
a、b为实数,则△=(-m)2-4(m+3)≥0,
解得m≤-2或m≥6,而a、b为正实数,
∴a+b=m>0,只有m≥6,
∴a2+b2=(a+b)2-2ab=m2-2(m+3)=(m-1)2-7,
可知当m≥1时,a2+b2随m的增大而增大,
∴当m=6时,a2+b2的值最小,为18.
故选D.
点评:本题考查了二次函数最值在确定代数式的值中的运用.本题要注意:①根据已知条件换元,转化为二次函数,②a、b为正实数条件的运用.