精英家教网 > 初中数学 > 题目详情

【题目】小明四等分弧AB,他的作法如下:
①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;

②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。你认为小明的作法是否正确: , 理由是

【答案】不正确;理由是:如图,连结AN并延长,交CD于J,连结MN,设EF与AB交于I.由作法可知,EF∥CD,AI=IT,∴AN=NJ,∵∠NMJ>∠NJM,∴NJ>MN,∴AN>MN,∴弦AN与MN不相等,则
【解析】此题是将弧AB四等分,不是将弦AB四等分,根据圆心角、弧、弦的关系定理可知则弧AN≠弧MN,此题应根据垂径定理作图。
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将抛物线 先向右平移3个单位长度,再向上平移2个单位长度后得到新的抛物线的顶点坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,长方形纸片ABCD的长AD9cm,宽AB3cm,将其折叠,使点D与点B重合.

求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于点C,连接BC,如果∠A=30°,AB=2 ,那么AC的长等于( )

A.4
B.6
C.4
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,已知,点边上的任意一动点,点与点关于直线对称,直线与直线相交于点

(1)求边上的高;

(2)当为何值时,△与△重叠部分的面积最大,并求出最大值;

3)连接,当为直角三角形时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级一班小张陪妈妈到水果市场购买水果,在一个水果摊前听到妈妈与售货员的对话:

妈妈:“售货员同志,请帮我买些上次梨.

售货员:“大妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.

妈妈:“好,你们的服务态度和服务质量我很满意,这次我照上次一样,也买30元钱的苹果吧.”回家后对照前后两次的电脑小票,小张发现:每千克苹果的单价价是梨的单价的1.5倍,苹果的重量比梨轻2.5千克.

小张根据上面的对话和发票,求出了梨和苹果的单价,你知道梨和苹果的单价各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.

(1)动手操作:利用尺规作,以AB边上一点O为圆心,过A,D两点作⊙O,与AB的另一个交点为E,与AC的另一个交点为F(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由。
(2)若∠BAC=60度,CD= ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;

2)如图2,直线EF上有两点AC,分别引两条射线ABCD.已知∠BAF150°,∠DCF80°,射线ABCD分别绕点A、点C1/秒和3/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD与直线AB互相垂直时,t   秒.

查看答案和解析>>

同步练习册答案