精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线与x交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

【答案】
(1)

解:设抛物线的解析式为:y=a(x+1)(x﹣3),则有:

a(0+1)(0﹣3)=3,a=﹣1;

∴抛物线的解析式为:y=﹣x2+2x+3


(2)

解:由(1)知:y=﹣x2+2x+3=﹣(x﹣1)2+4,

即D(1,4);

过D作DF⊥x轴于F;

S四边形AEDB=SAOB+SDEF+S梯形BOFD= ×1×3+ ×2×4+ ×(3+4)×1=9;

即四边形AEDB的面积为9.


【解析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出抛物线的解析式;(2)根据抛物线的解析式,易求得抛物线顶点D的坐标;过D作DF⊥x轴于F,那么四边形AEDB的面积就可以由△AOB、△DEF、梯形BOFD的面积和求得.
【考点精析】认真审题,首先需要了解二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点),还要掌握二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,ADBCBEDFAEBDCFBD,垂足分别为点EF.

(1)求证:ADE≌△CBF

(2)ACBD相交于点O,求证:AOCO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=
(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.

视力

频数(人)

频率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)在频数分布表中,a=   ,b=   

(2)将频数分布直方图补充完整;

(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论,①abc<0; ②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正确的结论有(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,等边ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分BAC,且ADBC,则有BAD=30°BD=CD=AB.于是可得出结论“直角三角形中, 30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:

(1)如图2所示,在ABC中,ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,B=30°时,ACD的周长=   

(2)如图3所示,在ABC中,AB=AC,A=120°,D是BC的中点,DEAB,垂足为E,那么BE:EA=   

(3)如图4所示,在等边ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQAD于Q,若BP=2,求BQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:

候选人

面试

笔试

形体

口才

专业水平

创新能力

86

90

96

92

92

88

95

93

若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5546的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数y=kx的图象经过点(3,-6).

(1)求这个函数的解析式;

(2)画出这个函数图象;

(3)判断点A(4,-2)、点B(-1.5,3)是否在这个函数图象上;

(4)图象上有两点C(x1,y1),D(x2,y2),如果x1>x2比较y1,y2的大小

查看答案和解析>>

同步练习册答案