【题目】在△ABC中,BC=AC,∠C=90°,直角顶点C在x轴上,一锐角顶点B在y轴上.
(1)如图①若AD于垂直x轴,垂足为点D.点C坐标是(﹣1,0),点A的坐标是(﹣3,1),求点B的坐标.
(2)如图②,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,请猜想BD与AE有怎样的数量关系,并证明你的猜想.
(3)如图③,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OC,AF,OB之间有怎样的关系(直接写出结论,不需要证明)
【答案】(1)(0,2);(2)BD=2AF;(3)OC=OB+AF.
【解析】试题分析:(1)只要求出Rt△ADC≌Rt△COB即可求.
(2)先说明BD与AE有怎样的数量关系,然后针对得到的数量关系,作出合适的辅助线,画出相应的图形,根据等腰三角形底边上的高、底边上的中线、顶角的平分线三线合一,可以最终证得所要说明的数量关系;
(3)先猜想OC、AF、OB之间的关系,然后根据猜想作出合适的辅助线,画出相应的图形,然后证明所要证明的结论即可.
试题解析:(1)∵点C坐标是(1,0),点A的坐标是(3,1)
∴AD=OC,
在Rt△ADC和Rt△COB中, ,
∴Rt△ADC≌Rt△COB(HL),
∴OB=CD=2,
∴点B的坐标是(0,2);
(2)BD=2AF,
理由:作AE的延长线交BC的延长线于点F,如下图所示,
∵△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,AE⊥y轴于E,
∴∠BCA=∠ACF=90°,∠AED=90°,
∴∠DBC+∠BDC=90°,∠DAE+∠ADE=90°,
∵∠BDC=∠ADE,
∴∠DBC=∠FAC,
在△BDC和△AFC中,
,
∴△BDC≌△AFC(ASA)
∴BD=AF,
∵BE⊥AE,y轴恰好平分∠ABC,
∴AF=2AE,
∴BD=2AF;
(3)OC=OB+AF,
证明:作AE⊥OC于点E,如下图所示,
∵AE⊥OC,AF⊥y轴,
∴四边形OFAE是矩形,∠AEC=90°,
∴AF=OE,
∵△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,∠BOC=90°,
∴∠BCA=90°,
∴∠BCO+∠CBO=90°,∠BCO+∠ACE=90°,
∴∠CBO=∠ACE,
在△BOC和△CEO中,
,
∴△BOC≌△CEO(AAS)
∴OB=CE,
∵OC=OE+EC,OE=AF,OB=EC,
∴OC=OB+AF.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中错误的有( )
①绝对值是它本身的数有两个,它们是0和1
②一个数的绝对值必为正数
③2的相反数的绝对值是2
④任何数的绝对值都不是负数
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有( )
A. 2018或2019 B. 2017或2018 C. 2016或2017 D. 2019或2020
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com