精英家教网 > 初中数学 > 题目详情
11.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是(  )
A.32°B.64°C.77°D.87°

分析 旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.

解答 解:由旋转的性质可知,AC=AC′,
∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.
∵∠CC′B′=32°,
∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,
∵∠B=∠C′B′A,
∴∠B=77°,
故选C.

点评 本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.
(1)求证:D是BC的中点;
(2)若DE=3,BD-AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.点A(-1,y1),B(-2,y2)在反比例函数y=$\frac{2}{x}$的图象上,则y1,y2的大小关系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.把多项式9a3-ab2因式分解的结果是a(3a+b)(3a-b).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:cos60°-2-1+$\sqrt{(-2)^{2}}$-(π-3)0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:$\sqrt{9}$-|-2|+(-1)3+2-1=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为3.

查看答案和解析>>

同步练习册答案