精英家教网 > 初中数学 > 题目详情
如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB=(  )
分析:连接OC,连接OA,由AB为小圆的切线,得到OC垂直与AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
解答:解:连接OA,OC,
∵AB与小圆相切,
∴OC⊥AB,
∴C为AB的中点,即AC=BC=
1
2
AB,
在Rt△AOC中,OA=5cm,OC=3cm,
根据勾股定理得:AC=
OA2-OC2
=4cm,
则AB=2AC=8cm.
故选D
点评:此题考查了切线的性质,勾股定理,以及垂径定理,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,两个同心圆的半径分别为5和3,将半径为3的小圆沿直线m水平向右平移2个单位,则平移后的小圆与大圆的位置关系是
内切

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:两个同心圆的半径所截得的弧长AB=6πcm,CD=10πcm,且AC=12cm.
(1)求两圆的半径长.
(2)阴影部分的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个同心圆的半径分别是3cm和6cm,大⊙O的弦MN=6
3
cm,试判断MN与小⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个同心圆的半径分别为6cm和10cm,弦AB与小圆相切于点C,则AB=
16cm
16cm

查看答案和解析>>

同步练习册答案