精英家教网 > 初中数学 > 题目详情

【题目】某工厂设计了一款成本为20元件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元件)

30

40

50

60

每天销售量y(件)

500

400

300

200

1)研究发现,每天销售量y与单价x满足一次函数关系,求出yx的关系式;

2)当地物价部门规定,该工艺品销售单价最高不能超过50元件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?

【答案】1y=-10x+800;(2)销售单价定为40/件时,工艺厂试销该工艺品每天获得的利润8000

【解析】

1)利用待定系数法求解可得;
2)根据“总利润=单件利润×销售量”可得关于x的一元二次方程,解之即可得.

解:(1)设yx的关系式为:y=kx+bk0),

根据题意可得

解得:

y=-10x+800

2)根据题意,得:(x-20)(-10x+800=8000
整理,得:x2-100x+2400=0
解得:x1=40x2=60
∵销售单价最高不能超过50/件,
x=40
答:销售单价定为40/件时,工艺厂试销该工艺品每天获得的利润8000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知tanMON=2,矩形ABCD的边AB在射线OM上,AD=2AB=mCFON,垂足为点F.

1)如图(1),作AEON,垂足为点E. m=2时,求线段EF的长度;

图(1

2)如图(2),联结OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;

图(2

3)如图(3),当△AFD与△CDF相似时,求m的值.

图(3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.

如图,抛物线yx22x3x轴交于点AB,与y轴交于点D,以AB为直径,在x轴上方作半圆交y轴于点C,半圆的圆心记为M,此时这个半圆与这条抛物线x轴下方部分组成的图形就称为“蛋圆”.

1)直接写出点ABC的坐标及“蛋圆”弦CD的长;

A   B   C   CD   

2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.

求经过点C的“蛋圆”切线的解析式;

求经过点D的“蛋圆”切线的解析式;

3)由(2)求得过点D的“蛋圆”切线与x轴交点记为E,点F是“蛋圆”上一动点,试问是否存在SCDESCDF,若存在请求出点F的坐标;若不存在,请说明理由;

4)点P是“蛋圆”外一点,且满足∠BPC60°,当BP最大时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.

1A型和B型汽车每辆的价格分别是多少万元?

2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.

1)当售价为万元/辆时,平均每周的销售利润为___________万元;

2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,BCE是同一直线上的三个点, 四边形ABCD与四边形CEFG都是正方形.连接BGDE.

(1)探究BGDE之间的数量关系, 并证明你的结论;

(2)当正方形CEFG绕点C在平面内顺时针转动到如图②所示的位置时,线段BGED有何关系? 写出结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于第一象限两点,与坐标轴交于两点,连结.

1)求的函数解析式;

2)将直线向上平移个单位到直线,此时,直线上恰有一点满足,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把函数C1yax22ax3aa≠0)的图象绕点Pm0)旋转180°,得到新函数C2的图象,我们称C2C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t0).

1)填空:t的值为   (用含m的代数式表示)

2)若a=﹣1,当xt时,函数C1的最大值为y1,最小值为y2,且y1y21,求C2的解析式;

3)当m0时,C2的图象与x轴相交于AB两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段AD,若线ADC2的图象有公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

同步练习册答案