分析 (1)如图,作BE⊥DA于E,只要证明△ABE≌△ABH,△PBH≌△PBC,推出∠ABE=∠ABH,∠PBH=∠PBC,由∠EBC=90°,推出2∠ABH+2∠PBH=90°,由此即可证明.
(2)首先证明AP=AE+PC,设PA=x,在Rt△ADP中,利用勾股定理列出方程即可解决问题.
解答 (1)证明:如图,作BE⊥DA于E,
∵AD∥BC,∠C=90°,
∴∠C+∠D=180°,
∴∠D=∠C=∠E=90°,
∴四边形BCDE是矩形,
∴BE=CD=BC=BH,
∵BH⊥AP,
∴∠AHB=∠BHP=90°,
在Rt△ABE和Rt△ABH中,
$\left\{\begin{array}{l}{AB=AB}\\{BE=BH}\end{array}\right.$,
∴△ABE≌△ABH,
∴∠ABE=∠ABH,同理可证△PBH≌△PBC,
∴∠PBH=∠PBC,
∵∠EBC=90°,
∴2∠ABH+2∠PBH=90°,
∴∠ABH+∠PBH=45°,
∴∠ABP=45°.
(2)由(1)可知,四边形BCDE是矩形,
∵BC=CD,
∴四边形BCDE是正方形,
∴BC=CD=DE=BE=20,
∵△ABE≌△ABH,△PBH≌△PBC,
∴AE=AH,PC=PH,
∴AP=AE+PC,设AP=x,
则AE=x-12,AD=20-(x-12)=32-x,PD=8,
在Rt△ADP中,∵AD2+DP2=AP2,
∴(32-x)2+82=x2,
∴x=17,
∴AP=17.
点评 本题考查全等三角形的判定和性质、正方形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com