精英家教网 > 初中数学 > 题目详情
10.如图,已知四边形ABCD中,AD∥BC,∠C=90°,P是CD上一点,BH⊥AP于H,BH=BC=CD
(1)求证:∠ABP=45°;
(2)若BC=20,PC=12,求AP的长.

分析 (1)如图,作BE⊥DA于E,只要证明△ABE≌△ABH,△PBH≌△PBC,推出∠ABE=∠ABH,∠PBH=∠PBC,由∠EBC=90°,推出2∠ABH+2∠PBH=90°,由此即可证明.
(2)首先证明AP=AE+PC,设PA=x,在Rt△ADP中,利用勾股定理列出方程即可解决问题.

解答 (1)证明:如图,作BE⊥DA于E,
∵AD∥BC,∠C=90°,
∴∠C+∠D=180°,
∴∠D=∠C=∠E=90°,
∴四边形BCDE是矩形,
∴BE=CD=BC=BH,
∵BH⊥AP,
∴∠AHB=∠BHP=90°,
在Rt△ABE和Rt△ABH中,
$\left\{\begin{array}{l}{AB=AB}\\{BE=BH}\end{array}\right.$,
∴△ABE≌△ABH,
∴∠ABE=∠ABH,同理可证△PBH≌△PBC,
∴∠PBH=∠PBC,
∵∠EBC=90°,
∴2∠ABH+2∠PBH=90°,
∴∠ABH+∠PBH=45°,
∴∠ABP=45°.

(2)由(1)可知,四边形BCDE是矩形,
∵BC=CD,
∴四边形BCDE是正方形,
∴BC=CD=DE=BE=20,
∵△ABE≌△ABH,△PBH≌△PBC,
∴AE=AH,PC=PH,
∴AP=AE+PC,设AP=x,
则AE=x-12,AD=20-(x-12)=32-x,PD=8,
在Rt△ADP中,∵AD2+DP2=AP2
∴(32-x)2+82=x2
∴x=17,
∴AP=17.

点评 本题考查全等三角形的判定和性质、正方形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.已知5个运动员从小到大依次大1岁,他们的年龄和不超过100岁,最小的一个运动员一定不会超过18岁.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.小颖画了一个函数y=$\frac{a}{x}$-1的图象如图,那么关于x的分式方程$\frac{a}{x}$=1的解是x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在等腰直角三角形中,斜边比直角边长2cm,设斜边长为xcm,则可列方程为(x-2)2+(x-2)2=x2,化为一般形式为x2-8x+8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于D,O为AD上一点,以O为圆心,OA为半径的圆交AB于G,交BC于E、F.且AG=AD.
(1)求EF的长;
(2)求tan∠BDG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,B、C、D依次为一直线上4个点,BC=3,△BCE为等边三角形,⊙O过A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=$\frac{9}{x}$(x>0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AE交BC于点D,且AE⊥BE.
(1)求∠DBE的大小;
(2)求证:AD=2BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的Bˊ点,AE是折痕.
(1)试判断BˊE与DC的位置关系.
(2)如果∠C=140°,求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,在BC上取点D,使CD=AB,点E在AC上,连接AD、DE,且AD=DE,∠BAD=∠CDE.
(1)求证:∠B=∠C;
(2)若∠DAE=∠DEA=∠B+30°,求∠ADB的度数.

查看答案和解析>>

同步练习册答案