【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=.
(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.
【答案】(1)图形见解析(2)(3)点B沿x轴正半轴方向平移2个单位、(2+12)个单位,或(2﹣8)个单位时,△ABO为等腰三角形.
【解析】试题分析:(1)作出BO和AB的垂直平分线,两线交点就是外接圆圆心,再画圆即可;
(2)作BH⊥OA,垂足为H首先计算出B点坐标,然后求出AB长,可得cos∠BAO;
(3)分两种情况进行计算,①当BO=AB时,②当AO=AB′时,③当AO=OB′时,因为点B是沿x轴正半轴方向平移,因此B点纵坐标不变.
试题解析:
(1)如图所示:
(2)如图,作BH⊥OA,垂足为H,
在Rt△OHB中,∵BO=10,sin∠BOA=,
∴BH=6,
∴OH=8,∴点B的坐标为(8,6),
∵OA=20,OH=8,∴AH=12,
在Rt△AHB中,∵BH=6,
∴AB==6
∴cos∠BAO==;
(3)①当BO=AB时,∵AO=20,∴OH=10,
∴点B沿x轴正半轴方向平移2个单位,
②当AO=AB′时,∵AO=20,∴AB′=20,
过B′作B′N⊥x轴,
∵点B的坐标为(8,6),
∴B′N=6,∴AN==2.
∴点B沿x轴正半轴方向平移(2+12)个单位,
③当AO=OB″时,
∵AO=20,
∴OB″=20,
过B″作B″P⊥x轴.
∵B的坐标为(8,6),
∴B″P=6,
∴OP==2,
∴点B沿x轴正半轴方向平移(2﹣8)个单位,
综上所述当点B沿x轴正半轴方向平移2个单位、(2+12)个单位,或(2﹣8)个单位时,△ABO为等腰三角形.
科目:初中数学 来源: 题型:
【题目】某水果店第一次用600元购进水果若干千克,第二次又用600元购进该水果,但这次每千克的进价比第一次进价的提高了25%,购进数量比第一次少了30千克.
(1)求第一次每千克水果的进价是多少元?
(2)若要求这两次购进的水果按同一价格全部销售完毕后获利不低于420元,问每千克售价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了维护我国的海洋权益,我海军在海战演习中,欲确定每艘战舰的位置,需要知道每艘战舰相对我方潜艇的( )
A. 距离 B. 方位角
C. 距离和方位角 D. 以上都不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com