精英家教网 > 初中数学 > 题目详情
(2012•大连)如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.
(1)∠BEF=
180°-2α
180°-2α
(用含α的代数式表示);
(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求
EBEF
的值(用含m,n的代数式表示)
分析:(1)由梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,根据平行线的性质,易求得∠A的度数,又由∠BEF=∠A,即可求得∠BEF的度数;
(2)首先连接BD交EF于点O,连接BF,由AB=AD,易证得△EOB∽△DOF,根据相似三角形的对应边成比例,可得
OE
OD
=
OB
OF
,继而可证得△EOD∽△BOF,又由相似三角形的对应角相等,易得∠EBF=∠EFB=α,即可得EB=EF;
(3)首先延长AB至G,使AG=AE,连接BE,GE,易证得△DEF∽△GBE,然后由相似三角形的对应边成比例,即可求得
EB
EF
的值.
解答:(1)解:∵梯形ABCD中,AD∥BC,
∴∠A+∠ABC=180°,
∴∠A=180°-∠ABC=180°-2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°-2α;
故答案为:180°-2α;

(2)EB=EF.
证明:连接BD交EF于点O,连接BF.
∵AD∥BC,
∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α.
∵AB=AD,
∴∠ADB=
1
2
(180°-∠A)=α,
∴∠BDC=∠ADC-∠ADB=180°-2α,
由(1)得:∠BEF=180°-2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
OE
OD
=
OB
OF

OE
OB
=
OD
OF

∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB,
∴EB=EF;

(3)解:延长AB至G,使AG=AE,连接GE,
则∠G=∠AEG=
180°-∠A
2
=
180°-(180°-2α)
2
=α,
∵AD∥BC,
∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,
∴∠EDF=∠G,
∵∠BEF=∠A,
∴∠BEF=∠GBC,
∴∠GBC+∠EBC=∠DEB+∠BEF,
即∠EBG=∠FED,
∴△DEF∽△GBE,
EB
EF
=
BG
DE

∵AB=mDE,AD=nDE,
∴AG=AE=(n+1)DE,
∴BG=AG-AB=(n+1)DE-mDE=(n+1-m)DE,
EB
EF
=
BG
DE
=
(n+1-m)DE
DE
=n+1-m.
点评:此题考查了相似三角形的判定与性质、梯形的性质以及等腰三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大连)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为
0.5
0.5
(精确到0.1).
投篮次数(n) 50 100 150 200 250 300 500
投中次数(m) 28 60 78 104 123 152 251
投中频率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.50

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大连)如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9m的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为
8.1
8.1
m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大连)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=
8
8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大连)如图,抛物线y=ax2+bx+c经过A(-
3
,0)、B(3
3
,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.
(1)求该抛物线的解析式;
(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;
(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).

查看答案和解析>>

同步练习册答案