精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF。
(1)试说明BE=DF;   
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM。判断四边形AEMF是什么特殊四边形,并说明你的理由。
证明:(1 )∵正方形ABCD ,
∴∠D= ∠B=90°,AB=AD=BC=CD ,
在Rt △ABE 与Rt △ADF 中,
∵ AB=AD AE=AF    ,
∴Rt △ABE ≌Rt △ADF (HL ),
∴BE=DF ;
(2 )四边形AEGF 是菱形.
证明:∵△ABE ≌△ADF ,
∴∠BAE= ∠DAF ,AE=AF
∵四边形ABCD 是正方形,
∴AC 平分∠BAD ,
∴∠EAC= ∠FAC ,
又∵AE=AF ,
∴AO 垂直平分EF ,
又∵OG=OA ,
∴四边形AEGF 是平行四边形,
∵AO ⊥EF ,
∴平行四边形AEGF 是菱形。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案