精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,,则下列结论: ; ;③点P的平分线上,其中正确的是()

A.只有①B.只有②C.只有①②D.①②③

【答案】D

【解析】

根据ABAEACAD可判断①;证ABD≌△ACE,推出∠B=∠C,根据AAS证明BPE≌△CPD即可判断②;连接AP,根据BPE≌△CPD推出BPCP,根据SASABP≌△ACP,推出∠1=∠2即可判断③.

解:∵ABACADAE

ABAEACAD

EBDC,①正确;

∵在ABDACE中,

∴△ABD≌△ACESAS),

∴∠B=∠C

BPECPD中,

∴△BPE≌△CPDAAS),②正确;

如图,连接AP

∵△BPE≌△CPD

BPCP

ABPACP中,

∴△ABP≌△ACPSAS),

∴∠1=∠2

∴点P在∠BAC的角平分线上,③正确;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为10的等边三角形,PAC边上一动点,由AC运动(与AC不重合).

(Ⅰ)如图1,若点QBC边上一动点,与点P同时以相同的速度由CB运动(与CB不重合).求证:BPAQ

(Ⅱ)如图2,若QCB延长线上一动点,与点P同时以相同的速度由BCB延长线方向运动(Q不与B重合),过PPEABE,连接PQABD,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一种折叠式可调节的鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕AB上定点C前后转动,用来调节CDAB的夹角,支架CD带有伸缩调节长度的伸缩功能,已知BC=60cm.

(1)若支架AB与地面的夹角∠BAF=35°,支架CD与钓鱼竿DB垂直,钓鱼竿DB与地面AF平行,则支架CD的长度为   cm(精确到0.1cm);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).

(2)如图2,保持(1)中支架AB与地面的夹角不变,调节支架CDAB的夹角,使得∠DCB=85°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用配方法求出抛物线的顶点坐标、对称轴、最大值或最小值;若将抛物线先向左平移个单位,再向上平移个单位,所得抛物线的函数关系式为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与两坐标轴分别交于三点,一次函数的图象与抛物线交于两点.

求点的坐标;

当两函数的函数值都随着的增大而增大,求的取值范围;

当自变量满足什么范围时,一次函数值大于二次函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人在大楼30米高(PH=30)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i1,P,H,B,C,A在同一个平面上,H,B,C在同一条直线上,PHHC.A,B两点间的距离是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列各题:

(1)先化简,再求代数式(的值,其中x=cos30°+

(2)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).

(1)求∠OBC的度数;

(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;

(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AC为斜边向外作等腰直角三角形COA,已知BC=8,OB=10,则另一直角边AB的长为__________.

查看答案和解析>>

同步练习册答案