精英家教网 > 初中数学 > 题目详情
12.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6$\sqrt{2}$,则FG的长为3$\sqrt{6}$.

分析 首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题.

解答 解:∵四边形ABCD是菱形,∠BAD=120°,
∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD是等边三角形,
∵EG⊥AC,
∴∠AEG=∠AGE=30°,
∵∠B=∠EGF=60°,
∴∠AGF=90°,
∴FG⊥BC,
∴2•S△ABC=BC•FG,
∴2×$\frac{\sqrt{3}}{4}$×(6$\sqrt{2}$)2=6$\sqrt{2}$•FG,
∴FG=3$\sqrt{6}$.
故答案为3$\sqrt{6}$.

点评 本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.从1,2,3,6中任意选两个数,记作a和b,那么点(a,b)在函数y=$\frac{6}{x}$图象上的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点B(2,n)是直线y=k1x(k1≠0)上的点,如果直线y=k1x(k1≠0)平分∠yOx,BA⊥x轴于A,BC⊥y轴于C.
(1)求k1的值;
(2)如果反比例函数y=$\frac{k_2}{x}$(k2≠0)的图象与BC、BA分别交于点D、E,求证:OD=OE;
(3)在(2)的条件下,如果四边形BDOE的面积是△ABO面积的$\frac{4}{3}$,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.(-$\frac{1}{2}$)-2的倒数是(  )
A.4B.$\frac{1}{4}$C.-4D.-$\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.某住宅小区五月份1日至5如每天用水量变化情况如图所示,那么这5天平均每天用水量的中位数是(  )
A.28B.32C.34D.36

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.

请根据图中信息,解答下列问题:
(1)a=19%,b=20%,“每天做”对应阴影的圆心角为144°;
(2)请你补全条形统计图;
(3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在选拔2016年第十三届全国冬季运动会速滑运动员时,教练打算根据平时训练成绩,从运动员甲和乙种挑选1名成绩稳定的运动员,甲、乙两名运动员平时训练成绩的方差分别为S2=0.03,S2=0.20,你认为教练应该挑选的运动员是(  )
A.B.C.甲、乙都行D.无法判断

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
(1)线段OC的长为$\frac{\sqrt{17}}{2}$;
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
②在平移过程中,当S=$\frac{1}{4}$时,请直接写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案