【题目】在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.
(1)如图1,①∠BEC=_________°;
②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;
(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.
图1 图2
【答案】45
【解析】
(1)根据矩形的性质得到,根据角平分线的定义得到,根据三角形内角和定理计算即可;
(2)利用定理证明;
(3)连接,证明四边形是矩形,得到,根据勾股定理求出即可.
(1)①∵四边形ABCD为矩形,
∴∠ABC=∠BCD=90°,
∵BE平分∠ABC,
∴∠EBC=45°,
∴∠BEC=45°,
故答案为:45;
②△ADE≌△ECF,
理由如下:∵四边形ABCD是矩形,
∴∠ABC=∠C=∠D=90°,AD=BC.
∵FE⊥AE,
∴∠AEF=90°.
∴∠AED+∠FEC=180°-∠AEF=90°.
∵∠AED+∠DAE=90°,
∴∠FEC=∠EAD,
∵BE平分∠ABC,
∴∠BEC=45°.
∴∠EBC=∠BEC.
∴BC=EC.
∴AD=EC.
在△ADE和△ECF中,
∴△ADE≌△ECF;
(2)连接HB,如图2,
∵FH∥CD,
∴∠HFC=180°-∠C=90°.
∴四边形HFCD是矩形.
∴DH=CF,
∵△ADE≌△ECF,
∴DE=CF.
∴DH=DE.
∴∠DHE=∠DEH=45°.
∵∠BEC=45°,
∴∠HEB=180°-∠DEH-∠BEC=90°.
∵NH∥BE,NB∥HE,
∴四边形NBEH是平行四边形.
∴四边形NBEH是矩形.
∴NE=BH.
∵四边形ABCD是矩形,
∴∠BAH=90°.
∵在Rt△BAH中,AB=4,AH=2,
科目:初中数学 来源: 题型:
【题目】某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩 及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
甲 | 乙 | 丙 | 丁 | |
8.9 | 9.5 | 9.5 | 8.9 | |
s2 | 0.92 | 0.92 | 1.01 | 1.03 |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求证:此方程总有两个实数根;
(2)若此方程有一个根大于0且小于1,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知原点O,A(0,4),B(2,0),将△OAB绕平面内一点P逆时针旋转90°,使得旋转后的三角形的两个顶点恰好落在双曲线 上,则旋转中心P的坐标为。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:
(1)图甲中的BC长是多少?
(2)图乙中的a是多少?
(3)图甲中的图形面积的多少?
(4)图乙的b是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC外作△ABD和△ACE,使AD=AB,AE=AC,且∠DAB=∠EAC,连接BE,CD相交于P点,求证:点A在∠DPE的平分线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算或化简
(1)计算﹣14﹣(1﹣0.5)×.
(2)计算()×(﹣36)+1+(﹣2)+|﹣2﹣3|﹣5.
(3)化简(3a﹣2b)+(5a﹣7b)﹣2(2a﹣4b).
(4)化简(﹣x2+2xy﹣y2)﹣2(xy﹣3x2)+3(2y2﹣xy).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com