分析 (1)根据题意,A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,解不等式组,得到关于x的范围,根据整数解可得相应方案;
(2)总获利=700×A种产品数量+1200×B种产品数量,根据函数的增减性和(1)得到的取值可得最大利润.
解答 解:(1)根据题意,列不等式组得:
$\left\{\begin{array}{l}{9x+(50-x)×4≤360}\\{3x+(50-x)×10≤290}\end{array}\right.$,
解第一个不等式得:x≤32,
解第二个不等式得:x≥30,
∴30≤x≤32,
∵x为正整数,
∴x=30、31、32,
50-30=20,
50-31=19,
50-32=18,
∴符合的生产方案为①生产A产品30件,B产品20件;
②生产A产品31件,B产品19件;
③生产A产品32件,B产品18件;
(2)总获利=700×x+1200×(50-x)=-500x+60000,
∵-500<0,而30≤x≤32,
∴当x越小时,总利润最大,
即当x=30时,最大利润为:-500×30+60000=45000元.
∴生产A产品30件,B产品20件使生产A、B两种产品的总获利最大,最大利润是45000元.
点评 考查一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2.5 | D. | 2.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 某班同学“立定跳远”的成绩 | B. | 某水库中鱼的种类 | ||
C. | 某鞋厂生产的鞋底承受的弯折次数 | D. | 某型号节能灯的使用寿命 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com