精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C.则:
①b=-2;
②该二次函数图象与y轴交于负半轴;
③存在这样一个a,使得M、A、C三点在同一条直线上;
④若a=1,则OA•OB=OC2
以上说法正确的有(  )
A、①②③④B、②③④C、①②④D、①②③
分析:①二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),因而将M、N两点坐标代入即可消去a、c解得b值.
②根据图象的特点及与直线MN比较,可知当-1<x<1时,二次函数图象在直线MN的下方.
③同②理.
④当y=0时利用根与系数的关系,可得到OA•OB的值,当x=0时,可得到OC的值.通过c建立等量关系求证.
解答:解:①∵二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),
2=a-b+c 
-2=a+b+c

解得b=-2.
故该选项正确.

②方法一:∵二次函数y=ax2+bx+c,a>0
∴该二次函数图象开口向上
∵点M(-1,2)和点N(1,-2),
∴直线MN的解析式为y-2=
2-(-2)
-1-1
[x-(-1)]

即y=-2x,
根据抛物线的图象的特点必然是当-1<x<1时,二次函数图象在y=-2x的下方,
∴该二次函数图象与y轴交于负半轴;
方法二:由①可得b=-2,a+c=0,即c=-a<0,
所以二次函数图象与y轴交于负半轴.
故该选项正确.

③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.
故该选项错误.

④当a=1时,c=-1,∴该抛物线的解析式为y=x2-2x-1
当y=0时,0=x2-2x+c,利用根与系数的关系可得 x1•x2=c,
即OA•OB=|c|,
当x=0时,y=c,即OC=|c|=1=OC2
∴若a=1,则OA•OB=OC2
故该选项正确.

总上所述①②④正确.
故选C.
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的图象性质及特点、一元二次方程根与系数的关系、直线解析式的确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案