精英家教网 > 初中数学 > 题目详情
如图,圆O的半径OA与OB互相垂直,P是线段OB延长线上的一动点,线段AP交圆O于点D,过D点作圆O的切线交OP于点E.
(1)观察图形,点P在移动过程中比较DE与EP的大小关系,并对你的结论加以证明;
(2)作DH⊥OP于点H,若HE=6,DE=4
3
,求圆O半径的长.
(1)DE=EP…(1分)
证明如下:连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵OA=OD
∴∠OAP=∠ODA
∴∠EDP=∠ADF=90°-∠ODA=90°-∠OAP
∵AO⊥OP
∴∠P=90°-∠OAP
∴∠P=∠EDP,
∴DE=EP;

(2)在Rt△DHE中,
∵HE=6,DE=4
3
,∠DHE=90°
∴cos∠HED=
6
4
3
=
3
2

∴∠HED=30°
∴∠DOB=60°,
∵△ODE是直角三角形,DE=4
3

∴OD=4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点M(-l,0)为圆心的圆与y轴,x轴分别交于点A、B、C、D,直线y=-
3
3
x-
5
3
3
与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)求⊙M的半径;

(2)如图,弦HQ交x轴于点P,且PD:PH=4:
7
,求点P的坐标;

(3)如图,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点G,连接AG.过点M作MN⊥x轴交BK于N.是否存在这样的点K,使得AG=MK?若存在,请求出GN的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=
3
5
,求DC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BCOA,劣弧
BC
的弧长为______.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交于点P,则∠BPC=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形ABCD中,AB=8,BC=6,如果圆A是以点A为圆心,9为半径的圆,那么下列判断正确的是(  )
A.点B、C均在圆A外
B.点B在圆A外、点C在圆A内
C.点B在圆A内、点C在圆A外
D.点B、C均在圆A内

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是AB延长线上一点,且BC=OB,CE与⊙O交于点D,过点A作AE⊥CE,垂足为E,连接AD,∠DAC=∠C.
(Ⅰ)求证:直线CE是⊙O的切线.
(Ⅱ)求
CD
DE
的值.

查看答案和解析>>

同步练习册答案